变量$t为负函数系统Cauchy问题的非局部可解性$

IF 0.5 Q3 MATHEMATICS
M. Dontsova
{"title":"变量$t为负函数系统Cauchy问题的非局部可解性$","authors":"M. Dontsova","doi":"10.52737/18291163-2023.15.4-1-10","DOIUrl":null,"url":null,"abstract":"We obtain sufficient conditions for the existence and uniqueness of a local solution of the Cauchy problem for a quasilinear system with negative functions of the variable $t$ and show that the solution has the same $x$-smoothness as the initial function. We also obtain sufficient conditions for the existence and uniqueness of a nonlocal solution of the Cauchy problem for a quasilinear system with negative functions of the variable $t$.","PeriodicalId":42323,"journal":{"name":"Armenian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlocal Solvability of the Cauchy Problem for a System with Negative Functions of the Variable $t$\",\"authors\":\"M. Dontsova\",\"doi\":\"10.52737/18291163-2023.15.4-1-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain sufficient conditions for the existence and uniqueness of a local solution of the Cauchy problem for a quasilinear system with negative functions of the variable $t$ and show that the solution has the same $x$-smoothness as the initial function. We also obtain sufficient conditions for the existence and uniqueness of a nonlocal solution of the Cauchy problem for a quasilinear system with negative functions of the variable $t$.\",\"PeriodicalId\":42323,\"journal\":{\"name\":\"Armenian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Armenian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52737/18291163-2023.15.4-1-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Armenian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52737/18291163-2023.15.4-1-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于变量为$t$的负函数拟线性系统,我们得到了Cauchy问题局部解存在唯一的充分条件,并证明了该解与初始函数具有相同的$x$-光滑性。我们还得到了变量为$t$的具有负函数的拟线性系统的Cauchy问题的非局部解的存在性和唯一性的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlocal Solvability of the Cauchy Problem for a System with Negative Functions of the Variable $t$
We obtain sufficient conditions for the existence and uniqueness of a local solution of the Cauchy problem for a quasilinear system with negative functions of the variable $t$ and show that the solution has the same $x$-smoothness as the initial function. We also obtain sufficient conditions for the existence and uniqueness of a nonlocal solution of the Cauchy problem for a quasilinear system with negative functions of the variable $t$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
13
审稿时长
48 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信