具有广义混合光滑性的Nikolsky Besov空间中函数的迹和扩张定理

IF 0.7 Q2 MATHEMATICS
K. Bekmaganbetov, K.Ye. Kervenev, Y. Toleugazy
{"title":"具有广义混合光滑性的Nikolsky Besov空间中函数的迹和扩张定理","authors":"K. Bekmaganbetov, K.Ye. Kervenev, Y. Toleugazy","doi":"10.31489/2022m4/42-50","DOIUrl":null,"url":null,"abstract":"The theory of embedding of spaces of differentiable functions studies important relations of differential (smoothness) properties of functions in various metrics and has wide application in the theory of boundary value problems of mathematical physics, approximation theory and other fields of mathematics. In this article, we prove the theorems about traces and extensions for functions from Nikolsky-Besov spaces with generalized mixed smoothness and mixed metrics. The proofs of the obtained results is based on the inequality of different dimensions for trigonometric polynomials in Lebesgue spaces with mixed metrics and the embedding theorem of classical Nikolsky-Besov spaces in the space of continuous functions.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The theorems about traces and extensions for functions from Nikolsky-Besov spaces with generalized mixed smoothness\",\"authors\":\"K. Bekmaganbetov, K.Ye. Kervenev, Y. Toleugazy\",\"doi\":\"10.31489/2022m4/42-50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theory of embedding of spaces of differentiable functions studies important relations of differential (smoothness) properties of functions in various metrics and has wide application in the theory of boundary value problems of mathematical physics, approximation theory and other fields of mathematics. In this article, we prove the theorems about traces and extensions for functions from Nikolsky-Besov spaces with generalized mixed smoothness and mixed metrics. The proofs of the obtained results is based on the inequality of different dimensions for trigonometric polynomials in Lebesgue spaces with mixed metrics and the embedding theorem of classical Nikolsky-Besov spaces in the space of continuous functions.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2022m4/42-50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m4/42-50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

可微函数空间嵌入理论研究了函数在各种度量中的微分(光滑)性质的重要关系,在数学物理的边值问题理论、逼近理论等数学领域有着广泛的应用。本文用广义混合光滑性和混合度量证明了Nikolsky-Besov空间中函数的迹和扩张定理。所得结果的证明是基于具有混合度量的Lebesgue空间中三角多项式的不同维数不等式和连续函数空间中经典Nikolsky Besov空间的嵌入定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The theorems about traces and extensions for functions from Nikolsky-Besov spaces with generalized mixed smoothness
The theory of embedding of spaces of differentiable functions studies important relations of differential (smoothness) properties of functions in various metrics and has wide application in the theory of boundary value problems of mathematical physics, approximation theory and other fields of mathematics. In this article, we prove the theorems about traces and extensions for functions from Nikolsky-Besov spaces with generalized mixed smoothness and mixed metrics. The proofs of the obtained results is based on the inequality of different dimensions for trigonometric polynomials in Lebesgue spaces with mixed metrics and the embedding theorem of classical Nikolsky-Besov spaces in the space of continuous functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信