关于三维单色随机波及其消除的一点注记

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
F. Dalmao
{"title":"关于三维单色随机波及其消除的一点注记","authors":"F. Dalmao","doi":"10.30757/alea.v20-40","DOIUrl":null,"url":null,"abstract":"In this note we prove that the asymptotic variance of the nodal length of complex-valued monochromatic random waves restricted to an increasing domain in $\\R^3$ is linear in the volume of the domain. Put together with previous results this shows that a Central Limit Theorem holds true for $3$-dimensional monochromatic random waves. We compare with the variance of the nodal length of the real-valued $2$-dimensional monochromatic random waves where a faster divergence rate is observed, this fact is connected with Berry's cancellation phenomenon. Moreover, we show that a concentration phenomenon takes place.","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A note on 3d-monochromatic random waves and cancellation\",\"authors\":\"F. Dalmao\",\"doi\":\"10.30757/alea.v20-40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we prove that the asymptotic variance of the nodal length of complex-valued monochromatic random waves restricted to an increasing domain in $\\\\R^3$ is linear in the volume of the domain. Put together with previous results this shows that a Central Limit Theorem holds true for $3$-dimensional monochromatic random waves. We compare with the variance of the nodal length of the real-valued $2$-dimensional monochromatic random waves where a faster divergence rate is observed, this fact is connected with Berry's cancellation phenomenon. Moreover, we show that a concentration phenomenon takes place.\",\"PeriodicalId\":49244,\"journal\":{\"name\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v20-40\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v20-40","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们证明了在$\R^3$中,限制于递增域的复值单色随机波的节点长度的渐近方差在域的体积中是线性的。结合前面的结果,这表明一个中心极限定理适用于$3$维的单色随机波。我们将实值$2$维单色随机波的节点长度的方差进行了比较,其中观察到更快的发散率,这一事实与Berry的抵消现象有关。此外,我们还证明了集中现象的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on 3d-monochromatic random waves and cancellation
In this note we prove that the asymptotic variance of the nodal length of complex-valued monochromatic random waves restricted to an increasing domain in $\R^3$ is linear in the volume of the domain. Put together with previous results this shows that a Central Limit Theorem holds true for $3$-dimensional monochromatic random waves. We compare with the variance of the nodal length of the real-valued $2$-dimensional monochromatic random waves where a faster divergence rate is observed, this fact is connected with Berry's cancellation phenomenon. Moreover, we show that a concentration phenomenon takes place.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
48
期刊介绍: ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted. ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper. ALEA is affiliated with the Institute of Mathematical Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信