涉及Fermat商和Bernoulli数的整数超幂和的一些同余

IF 0.4 Q4 MATHEMATICS
Fouad Bounebirat, M. Rahmani
{"title":"涉及Fermat商和Bernoulli数的整数超幂和的一些同余","authors":"Fouad Bounebirat, M. Rahmani","doi":"10.7546/nntdm.2022.28.3.533-541","DOIUrl":null,"url":null,"abstract":"For a given prime p ≥ 5, let ℤ_p denote the set of rational p-integers (those rational numbers whose denominator is not divisible by p). In this paper, we establish some congruences modulo a prime power p5 on the hyper-sums of powers of integers in terms of Fermat quotient, Wolstenholme quotient, Bernoulli and Euler numbers.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some congruences on the hyper-sums of powers of integers involving Fermat quotient and Bernoulli numbers\",\"authors\":\"Fouad Bounebirat, M. Rahmani\",\"doi\":\"10.7546/nntdm.2022.28.3.533-541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a given prime p ≥ 5, let ℤ_p denote the set of rational p-integers (those rational numbers whose denominator is not divisible by p). In this paper, we establish some congruences modulo a prime power p5 on the hyper-sums of powers of integers in terms of Fermat quotient, Wolstenholme quotient, Bernoulli and Euler numbers.\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2022.28.3.533-541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2022.28.3.533-541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于给定的素数p≥5,设ℤ_p表示有理p整数的集合(那些分母不能被p整除的有理数)。本文用Fermat商、Wolstenholme商、Bernoulli数和Euler数在整数的超幂和上建立了模素数幂p5的一些同余。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some congruences on the hyper-sums of powers of integers involving Fermat quotient and Bernoulli numbers
For a given prime p ≥ 5, let ℤ_p denote the set of rational p-integers (those rational numbers whose denominator is not divisible by p). In this paper, we establish some congruences modulo a prime power p5 on the hyper-sums of powers of integers in terms of Fermat quotient, Wolstenholme quotient, Bernoulli and Euler numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信