图的共分离多项式

IF 0.3 Q4 MATHEMATICS
Aziz B. Tapeing, Ladznar S. Laja
{"title":"图的共分离多项式","authors":"Aziz B. Tapeing, Ladznar S. Laja","doi":"10.17654/0974165823059","DOIUrl":null,"url":null,"abstract":"A graph $G$ is co-segregated if $\\text{deg}_G(x)=\\text{deg}_G(y),$ then $xy \\in E(G)$. The co-segregated polynomial of a graph $G$ of order $n$ is given by $CoS(G,x)=\\sum_{k=1}^{n}C(k)x^k$,  where $C(k)$  is the number of co-segregated subgraphs of $G$ of order $k$. We characterize a co-segregated subgraph of a graph and also of a graph under some binary operations. Using these characterizations, we obtain co-segregated polynomials of such graphs.","PeriodicalId":40868,"journal":{"name":"Advances and Applications in Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO-SEGREGATED POLYNOMIAL OF GRAPHS\",\"authors\":\"Aziz B. Tapeing, Ladznar S. Laja\",\"doi\":\"10.17654/0974165823059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A graph $G$ is co-segregated if $\\\\text{deg}_G(x)=\\\\text{deg}_G(y),$ then $xy \\\\in E(G)$. The co-segregated polynomial of a graph $G$ of order $n$ is given by $CoS(G,x)=\\\\sum_{k=1}^{n}C(k)x^k$,  where $C(k)$  is the number of co-segregated subgraphs of $G$ of order $k$. We characterize a co-segregated subgraph of a graph and also of a graph under some binary operations. Using these characterizations, we obtain co-segregated polynomials of such graphs.\",\"PeriodicalId\":40868,\"journal\":{\"name\":\"Advances and Applications in Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances and Applications in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/0974165823059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances and Applications in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0974165823059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果$\text{deg}_G(x) =\text{deg}_G(y) ,$然后$xy\在E(G)$中。$n$阶图$G$的共分离多项式由$CoS(G,x)=\sum_{k=1}给出^{n}C(k) x^k$,其中$C(k)$是$k$阶的$G$的共分离子图的数目。我们刻画了一个图的共分离子图,以及在一些二元运算下的一个图。利用这些特征,我们得到了这类图的共分离多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CO-SEGREGATED POLYNOMIAL OF GRAPHS
A graph $G$ is co-segregated if $\text{deg}_G(x)=\text{deg}_G(y),$ then $xy \in E(G)$. The co-segregated polynomial of a graph $G$ of order $n$ is given by $CoS(G,x)=\sum_{k=1}^{n}C(k)x^k$,  where $C(k)$  is the number of co-segregated subgraphs of $G$ of order $k$. We characterize a co-segregated subgraph of a graph and also of a graph under some binary operations. Using these characterizations, we obtain co-segregated polynomials of such graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信