{"title":"基于对数似然比和约束最小准则的回归模型选择","authors":"Min Tsao","doi":"10.1002/cjs.11756","DOIUrl":null,"url":null,"abstract":"<p>Although log-likelihood is widely used in model selection, the log-likelihood ratio has had few applications in this area. We develop a log-likelihood ratio based method for selecting regression models by focusing on the set of models deemed plausible by the likelihood ratio test. We show that when the sample size is large and the significance level of the test is small, there is a high probability that the smallest model in this set is the true model; thus, we select this smallest model. The significance level of the test serves as a tuning parameter of this method. We consider three levels of this parameter in a simulation study and compare this method with the Akaike information criterion (AIC) and Bayesian information criterion (BIC) to demonstrate its excellent accuracy and adaptability to different sample sizes. This method is a frequentist alternative and a strong competitor to AIC and BIC for selecting regression models.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"52 1","pages":"195-211"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regression model selection via log-likelihood ratio and constrained minimum criterion\",\"authors\":\"Min Tsao\",\"doi\":\"10.1002/cjs.11756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although log-likelihood is widely used in model selection, the log-likelihood ratio has had few applications in this area. We develop a log-likelihood ratio based method for selecting regression models by focusing on the set of models deemed plausible by the likelihood ratio test. We show that when the sample size is large and the significance level of the test is small, there is a high probability that the smallest model in this set is the true model; thus, we select this smallest model. The significance level of the test serves as a tuning parameter of this method. We consider three levels of this parameter in a simulation study and compare this method with the Akaike information criterion (AIC) and Bayesian information criterion (BIC) to demonstrate its excellent accuracy and adaptability to different sample sizes. This method is a frequentist alternative and a strong competitor to AIC and BIC for selecting regression models.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":\"52 1\",\"pages\":\"195-211\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11756\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11756","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Regression model selection via log-likelihood ratio and constrained minimum criterion
Although log-likelihood is widely used in model selection, the log-likelihood ratio has had few applications in this area. We develop a log-likelihood ratio based method for selecting regression models by focusing on the set of models deemed plausible by the likelihood ratio test. We show that when the sample size is large and the significance level of the test is small, there is a high probability that the smallest model in this set is the true model; thus, we select this smallest model. The significance level of the test serves as a tuning parameter of this method. We consider three levels of this parameter in a simulation study and compare this method with the Akaike information criterion (AIC) and Bayesian information criterion (BIC) to demonstrate its excellent accuracy and adaptability to different sample sizes. This method is a frequentist alternative and a strong competitor to AIC and BIC for selecting regression models.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.