Xuecheng Yin, Sabah Bushaj, Yue Yuan, I. E. Büyüktahtakin
{"title":"新冠肺炎:基于代理的疫苗中心位置模拟优化疫苗分配问题","authors":"Xuecheng Yin, Sabah Bushaj, Yue Yuan, I. E. Büyüktahtakin","doi":"10.1080/24725854.2023.2223246","DOIUrl":null,"url":null,"abstract":"This paper presents an agent-based simulation-optimization modeling and algorithmic framework to determine the optimal vaccine center location and vaccine allocation strategies under budget constraints during an epidemic outbreak. Both simulation and optimization models incorporate population health dynamics, such as susceptible (S), vaccinated (V), infected (I) and recovered (R), while their integrated utilization focuses on the COVID-19 vaccine allocation challenges. We first formulate a dynamic location-allocation mixed-integer programming (MIP) model, which determines the optimal vaccination center locations and vaccines allocated to vaccination centers, pharmacies, and health centers in a multi-period setting in each region over a geographical location. We then extend the agent-based epidemiological simulation model of COVID-19 (Covasim) by adding new vaccination compartments representing people who take the first vaccine shot and the first two shots. The Covasim involves complex disease transmission contact networks, including households, schools, and workplaces, and demographics, such as age-based disease transmission parameters. We combine the extended Covasim with the vaccination center location-allocation MIP model into one single simulation-optimization framework, which works iteratively forward and backward in time to determine the optimal vaccine allocation under varying disease dynamics. The agent-based simulation captures the inherent uncertainty in disease progression and forecasts the refined number of susceptible individuals and infections for the current time period to be used as an input into the optimization. We calibrate, validate, and test our simulation-optimization vaccine allocation model using the COVID-19 data and vaccine distribution case study in New Jersey. The resulting insights support ongoing mass vaccination efforts to mitigate the impact of the pandemic on public health, while the simulation-optimization algorithmic framework could be generalized for other epidemics. [ FROM AUTHOR] Copyright of IISE Transactions is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)","PeriodicalId":56039,"journal":{"name":"IISE Transactions","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"COVID-19: Agent-Based Simulation-Optimization to Vaccine Center Location Vaccine Allocation Problem\",\"authors\":\"Xuecheng Yin, Sabah Bushaj, Yue Yuan, I. E. Büyüktahtakin\",\"doi\":\"10.1080/24725854.2023.2223246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an agent-based simulation-optimization modeling and algorithmic framework to determine the optimal vaccine center location and vaccine allocation strategies under budget constraints during an epidemic outbreak. Both simulation and optimization models incorporate population health dynamics, such as susceptible (S), vaccinated (V), infected (I) and recovered (R), while their integrated utilization focuses on the COVID-19 vaccine allocation challenges. We first formulate a dynamic location-allocation mixed-integer programming (MIP) model, which determines the optimal vaccination center locations and vaccines allocated to vaccination centers, pharmacies, and health centers in a multi-period setting in each region over a geographical location. We then extend the agent-based epidemiological simulation model of COVID-19 (Covasim) by adding new vaccination compartments representing people who take the first vaccine shot and the first two shots. The Covasim involves complex disease transmission contact networks, including households, schools, and workplaces, and demographics, such as age-based disease transmission parameters. We combine the extended Covasim with the vaccination center location-allocation MIP model into one single simulation-optimization framework, which works iteratively forward and backward in time to determine the optimal vaccine allocation under varying disease dynamics. The agent-based simulation captures the inherent uncertainty in disease progression and forecasts the refined number of susceptible individuals and infections for the current time period to be used as an input into the optimization. We calibrate, validate, and test our simulation-optimization vaccine allocation model using the COVID-19 data and vaccine distribution case study in New Jersey. The resulting insights support ongoing mass vaccination efforts to mitigate the impact of the pandemic on public health, while the simulation-optimization algorithmic framework could be generalized for other epidemics. [ FROM AUTHOR] Copyright of IISE Transactions is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)\",\"PeriodicalId\":56039,\"journal\":{\"name\":\"IISE Transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IISE Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/24725854.2023.2223246\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE Transactions","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/24725854.2023.2223246","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
COVID-19: Agent-Based Simulation-Optimization to Vaccine Center Location Vaccine Allocation Problem
This paper presents an agent-based simulation-optimization modeling and algorithmic framework to determine the optimal vaccine center location and vaccine allocation strategies under budget constraints during an epidemic outbreak. Both simulation and optimization models incorporate population health dynamics, such as susceptible (S), vaccinated (V), infected (I) and recovered (R), while their integrated utilization focuses on the COVID-19 vaccine allocation challenges. We first formulate a dynamic location-allocation mixed-integer programming (MIP) model, which determines the optimal vaccination center locations and vaccines allocated to vaccination centers, pharmacies, and health centers in a multi-period setting in each region over a geographical location. We then extend the agent-based epidemiological simulation model of COVID-19 (Covasim) by adding new vaccination compartments representing people who take the first vaccine shot and the first two shots. The Covasim involves complex disease transmission contact networks, including households, schools, and workplaces, and demographics, such as age-based disease transmission parameters. We combine the extended Covasim with the vaccination center location-allocation MIP model into one single simulation-optimization framework, which works iteratively forward and backward in time to determine the optimal vaccine allocation under varying disease dynamics. The agent-based simulation captures the inherent uncertainty in disease progression and forecasts the refined number of susceptible individuals and infections for the current time period to be used as an input into the optimization. We calibrate, validate, and test our simulation-optimization vaccine allocation model using the COVID-19 data and vaccine distribution case study in New Jersey. The resulting insights support ongoing mass vaccination efforts to mitigate the impact of the pandemic on public health, while the simulation-optimization algorithmic framework could be generalized for other epidemics. [ FROM AUTHOR] Copyright of IISE Transactions is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)
IISE TransactionsEngineering-Industrial and Manufacturing Engineering
CiteScore
5.70
自引率
7.70%
发文量
93
期刊介绍:
IISE Transactions is currently abstracted/indexed in the following services: CSA/ASCE Civil Engineering Abstracts; CSA-Computer & Information Systems Abstracts; CSA-Corrosion Abstracts; CSA-Electronics & Communications Abstracts; CSA-Engineered Materials Abstracts; CSA-Materials Research Database with METADEX; CSA-Mechanical & Transportation Engineering Abstracts; CSA-Solid State & Superconductivity Abstracts; INSPEC Information Services and Science Citation Index.
Institute of Industrial and Systems Engineers and our publisher Taylor & Francis make every effort to ensure the accuracy of all the information (the "Content") contained in our publications. However, Institute of Industrial and Systems Engineers and our publisher Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Institute of Industrial and Systems Engineers and our publisher Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Institute of Industrial and Systems Engineers and our publisher Taylor & Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to, or arising out of the use of the Content. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions .