用于高效地质场测绘的实用遥感数据分析:以犹他州西南部三峰7.5四边形西南部为例

Q3 Earth and Planetary Sciences
J. Quick, John-Paul Hogan
{"title":"用于高效地质场测绘的实用遥感数据分析:以犹他州西南部三峰7.5四边形西南部为例","authors":"J. Quick, John-Paul Hogan","doi":"10.24872/rmgjournal.57.2.117","DOIUrl":null,"url":null,"abstract":"\n We present the results of remote sensing analysis of U.S. Geological Survey digital elevation models, Landsat spectral data, and National Agriculture Imagery Program orthophotos to generate a preliminary geologic map that significantly aided our boots-on-the-ground geologic mapping of the southwest portion of the Three Peaks 7.5ʹ quadrangle in southwest Utah. Sedimentary rocks, intrusive rocks, and a variety of geologic contacts, including unconformities and faults, as well as unconsolidated alluvium are recognized in the study area. We constructed a series of geologic maps using remote sensing data and analysis techniques that are readily available to geoscientists. These techniques include band-ratioing, random forest analysis, and these analyses. Resolution of the resulting geologic maps generated by random forest analysis and principal component analysis were greatly improved by incorporating both the high resolution orthophoto and the 1/3 arc second digital elevation model into the principal component analysis. Our final remotely sensed geologic map integrated results from each technique. We used this remotely sensed geologic map to develop our preliminary plan for the field campaign. We preselected high priority targets (e.g., previously unrecognized units and faults) for in-person field analysis. We also identified highly accessible areas that allowed for efficient use of in-person field time needed for evaluation of large areas covered by relatively homogeneous units. The authors spent 25 days in the field over a seven-week field season, mapping the same area. Here, we compare the remote-sensed geologic maps with the final in-person field checked geologic map and discuss the utility of remote sensing data for detailed geologic field investigations. Preparing a remote sensing geologic map prior to field work has several advantages, including identification of mappable units, recognition of geologic contacts, and selection of priority target areas for direct evaluation of hypothesized field relationships, thereby promoting more efficient geologic mapping.","PeriodicalId":34958,"journal":{"name":"Rocky Mountain Geology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical remote sensing data analysis for efficient geological field mapping: An example from the southwest portion of the Three Peaks 7.5ʹ quadrangle, southwest Utah\",\"authors\":\"J. Quick, John-Paul Hogan\",\"doi\":\"10.24872/rmgjournal.57.2.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We present the results of remote sensing analysis of U.S. Geological Survey digital elevation models, Landsat spectral data, and National Agriculture Imagery Program orthophotos to generate a preliminary geologic map that significantly aided our boots-on-the-ground geologic mapping of the southwest portion of the Three Peaks 7.5ʹ quadrangle in southwest Utah. Sedimentary rocks, intrusive rocks, and a variety of geologic contacts, including unconformities and faults, as well as unconsolidated alluvium are recognized in the study area. We constructed a series of geologic maps using remote sensing data and analysis techniques that are readily available to geoscientists. These techniques include band-ratioing, random forest analysis, and these analyses. Resolution of the resulting geologic maps generated by random forest analysis and principal component analysis were greatly improved by incorporating both the high resolution orthophoto and the 1/3 arc second digital elevation model into the principal component analysis. Our final remotely sensed geologic map integrated results from each technique. We used this remotely sensed geologic map to develop our preliminary plan for the field campaign. We preselected high priority targets (e.g., previously unrecognized units and faults) for in-person field analysis. We also identified highly accessible areas that allowed for efficient use of in-person field time needed for evaluation of large areas covered by relatively homogeneous units. The authors spent 25 days in the field over a seven-week field season, mapping the same area. Here, we compare the remote-sensed geologic maps with the final in-person field checked geologic map and discuss the utility of remote sensing data for detailed geologic field investigations. Preparing a remote sensing geologic map prior to field work has several advantages, including identification of mappable units, recognition of geologic contacts, and selection of priority target areas for direct evaluation of hypothesized field relationships, thereby promoting more efficient geologic mapping.\",\"PeriodicalId\":34958,\"journal\":{\"name\":\"Rocky Mountain Geology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rocky Mountain Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24872/rmgjournal.57.2.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rocky Mountain Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24872/rmgjournal.57.2.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了美国地质调查局数字高程模型、陆地卫星光谱数据和国家农业图像计划正射照片的遥感分析结果,以生成初步地质图,这大大有助于我们对犹他州西南部7.5三峰四边形西南部的地面地质测绘。研究区域内可识别沉积岩、侵入岩和各种地质接触,包括不整合面和断层,以及松散冲积层。我们利用遥感数据和分析技术绘制了一系列地质图,这些数据和技术对地球科学家来说是现成的。这些技术包括波段比率、随机森林分析和这些分析。通过将高分辨率正射影像和1/3弧秒数字高程模型纳入主成分分析,通过随机森林分析和主成分分析生成的地质图的分辨率大大提高。我们的最终遥感地质图综合了每种技术的结果。我们利用这张遥感地质图制定了野外行动的初步计划。我们预先选择了高优先级目标(例如,以前未识别的单元和故障)进行现场分析。我们还确定了高度可访问的区域,以便有效利用对相对同质单元覆盖的大区域进行评估所需的现场时间。作者在为期七周的野外季节里花了25天的时间对同一地区进行了测绘。在这里,我们将遥感地质图与最终的现场检查地质图进行比较,并讨论遥感数据在详细地质现场调查中的效用。在野外工作之前准备遥感地质图有几个优点,包括识别可绘制地图的单元、识别地质接触、选择优先目标区域以直接评估假设的野外关系,从而促进更有效的地质测绘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical remote sensing data analysis for efficient geological field mapping: An example from the southwest portion of the Three Peaks 7.5ʹ quadrangle, southwest Utah
We present the results of remote sensing analysis of U.S. Geological Survey digital elevation models, Landsat spectral data, and National Agriculture Imagery Program orthophotos to generate a preliminary geologic map that significantly aided our boots-on-the-ground geologic mapping of the southwest portion of the Three Peaks 7.5ʹ quadrangle in southwest Utah. Sedimentary rocks, intrusive rocks, and a variety of geologic contacts, including unconformities and faults, as well as unconsolidated alluvium are recognized in the study area. We constructed a series of geologic maps using remote sensing data and analysis techniques that are readily available to geoscientists. These techniques include band-ratioing, random forest analysis, and these analyses. Resolution of the resulting geologic maps generated by random forest analysis and principal component analysis were greatly improved by incorporating both the high resolution orthophoto and the 1/3 arc second digital elevation model into the principal component analysis. Our final remotely sensed geologic map integrated results from each technique. We used this remotely sensed geologic map to develop our preliminary plan for the field campaign. We preselected high priority targets (e.g., previously unrecognized units and faults) for in-person field analysis. We also identified highly accessible areas that allowed for efficient use of in-person field time needed for evaluation of large areas covered by relatively homogeneous units. The authors spent 25 days in the field over a seven-week field season, mapping the same area. Here, we compare the remote-sensed geologic maps with the final in-person field checked geologic map and discuss the utility of remote sensing data for detailed geologic field investigations. Preparing a remote sensing geologic map prior to field work has several advantages, including identification of mappable units, recognition of geologic contacts, and selection of priority target areas for direct evaluation of hypothesized field relationships, thereby promoting more efficient geologic mapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rocky Mountain Geology
Rocky Mountain Geology Earth and Planetary Sciences-Geology
CiteScore
1.10
自引率
0.00%
发文量
4
期刊介绍: Rocky Mountain Geology (formerly Contributions to Geology) is published twice yearly by the Department of Geology and Geophysics at the University of Wyoming. The focus of the journal is regional geology and paleontology of the Rocky Mountains and adjacent areas of western North America. This high-impact, scholarly journal, is an important resource for professional earth scientists. The high-quality, refereed articles report original research by top specialists in all aspects of geology and paleontology in the greater Rocky Mountain region.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信