{"title":"SnO2和胶体量子点混合层的高效电致发光器件","authors":"C. Yoon, Aram Moon, Heesun Yang, Jiwan Kim","doi":"10.1080/15980316.2022.2039790","DOIUrl":null,"url":null,"abstract":"We demonstrate the high efficiency of quantum dot light-emitting diodes (QLEDs) that consist of a mixed layer of SnO2 nanoparticles (NPs) and quantum dots (QDs). A stable mixture of SnO2 NPs and QDs is prepared in chlorobenzene and then applied to QLEDs with no separate electron transport layer (ETL). QLEDs with such a simplified structure produce a maximum luminance of 142,855 cd/m2, an EQE of 9.42%, and a current efficiency of 41.18 cd/A that result from the improved charge balance of the mixed layer. This produces one of the best device performances of QLEDs with a non-ZnO inorganic ETL, clearly indicating the remarkable promise of using SnO2 NPs as an inorganic ETL for QLEDs. Moreover, the reduction of fabrication steps in this solution-based process proves advantageous to next-generation display technology.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":"23 1","pages":"193 - 199"},"PeriodicalIF":3.7000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly efficient electroluminescence devices with a mixed layer of SnO2 and colloidal quantum dots\",\"authors\":\"C. Yoon, Aram Moon, Heesun Yang, Jiwan Kim\",\"doi\":\"10.1080/15980316.2022.2039790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate the high efficiency of quantum dot light-emitting diodes (QLEDs) that consist of a mixed layer of SnO2 nanoparticles (NPs) and quantum dots (QDs). A stable mixture of SnO2 NPs and QDs is prepared in chlorobenzene and then applied to QLEDs with no separate electron transport layer (ETL). QLEDs with such a simplified structure produce a maximum luminance of 142,855 cd/m2, an EQE of 9.42%, and a current efficiency of 41.18 cd/A that result from the improved charge balance of the mixed layer. This produces one of the best device performances of QLEDs with a non-ZnO inorganic ETL, clearly indicating the remarkable promise of using SnO2 NPs as an inorganic ETL for QLEDs. Moreover, the reduction of fabrication steps in this solution-based process proves advantageous to next-generation display technology.\",\"PeriodicalId\":16257,\"journal\":{\"name\":\"Journal of Information Display\",\"volume\":\"23 1\",\"pages\":\"193 - 199\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Display\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15980316.2022.2039790\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Display","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15980316.2022.2039790","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Highly efficient electroluminescence devices with a mixed layer of SnO2 and colloidal quantum dots
We demonstrate the high efficiency of quantum dot light-emitting diodes (QLEDs) that consist of a mixed layer of SnO2 nanoparticles (NPs) and quantum dots (QDs). A stable mixture of SnO2 NPs and QDs is prepared in chlorobenzene and then applied to QLEDs with no separate electron transport layer (ETL). QLEDs with such a simplified structure produce a maximum luminance of 142,855 cd/m2, an EQE of 9.42%, and a current efficiency of 41.18 cd/A that result from the improved charge balance of the mixed layer. This produces one of the best device performances of QLEDs with a non-ZnO inorganic ETL, clearly indicating the remarkable promise of using SnO2 NPs as an inorganic ETL for QLEDs. Moreover, the reduction of fabrication steps in this solution-based process proves advantageous to next-generation display technology.