基于准则权值增量提取的多目标组合优化问题交互式求解

IF 2.3 Q3 MANAGEMENT
Nawal Benabbou , Patrice Perny
{"title":"基于准则权值增量提取的多目标组合优化问题交互式求解","authors":"Nawal Benabbou ,&nbsp;Patrice Perny","doi":"10.1007/s40070-018-0085-4","DOIUrl":null,"url":null,"abstract":"<div><p>We propose an introduction to the use of incremental preference elicitation methods in the field of multiobjective combinatorial optimization. We consider three different optimization problems in vector-valued graphs, namely the shortest path problem, the minimum spanning tree problem and the assignment problem. In each case, the preferences of the decision-maker over cost vectors are assumed to be representable by a weighted sum but the weights of criteria are initially unknown. We then explain how to interweave preference elicitation and search to quickly determine a near-optimal solution with a limited number of preference queries. This leads us to successively introduce an interactive version of dynamic programming, greedy search, and branch and bound to solve the problems under consideration. We then present numerical tests showing the practical efficiency of these algorithms that achieve a good compromise between the number of queries asked and the solution times.</p></div>","PeriodicalId":44104,"journal":{"name":"EURO Journal on Decision Processes","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40070-018-0085-4","citationCount":"14","resultStr":"{\"title\":\"Interactive resolution of multiobjective combinatorial optimization problems by incremental elicitation of criteria weights\",\"authors\":\"Nawal Benabbou ,&nbsp;Patrice Perny\",\"doi\":\"10.1007/s40070-018-0085-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose an introduction to the use of incremental preference elicitation methods in the field of multiobjective combinatorial optimization. We consider three different optimization problems in vector-valued graphs, namely the shortest path problem, the minimum spanning tree problem and the assignment problem. In each case, the preferences of the decision-maker over cost vectors are assumed to be representable by a weighted sum but the weights of criteria are initially unknown. We then explain how to interweave preference elicitation and search to quickly determine a near-optimal solution with a limited number of preference queries. This leads us to successively introduce an interactive version of dynamic programming, greedy search, and branch and bound to solve the problems under consideration. We then present numerical tests showing the practical efficiency of these algorithms that achieve a good compromise between the number of queries asked and the solution times.</p></div>\",\"PeriodicalId\":44104,\"journal\":{\"name\":\"EURO Journal on Decision Processes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40070-018-0085-4\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Decision Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2193943821000923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Decision Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2193943821000923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 14

摘要

本文介绍了在多目标组合优化领域中使用增量偏好激发方法。我们考虑了向量值图的三种不同的优化问题,即最短路径问题、最小生成树问题和分配问题。在每种情况下,假设决策者对成本向量的偏好可以用加权和表示,但标准的权重最初是未知的。然后,我们解释了如何将偏好激发和搜索交织在一起,以在有限的偏好查询数量下快速确定接近最优的解决方案。这导致我们相继引入交互式版本的动态规划、贪婪搜索和分支绑定来解决所考虑的问题。然后,我们给出了数值测试,显示了这些算法的实际效率,这些算法在请求的查询数量和解决时间之间实现了很好的折衷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive resolution of multiobjective combinatorial optimization problems by incremental elicitation of criteria weights

We propose an introduction to the use of incremental preference elicitation methods in the field of multiobjective combinatorial optimization. We consider three different optimization problems in vector-valued graphs, namely the shortest path problem, the minimum spanning tree problem and the assignment problem. In each case, the preferences of the decision-maker over cost vectors are assumed to be representable by a weighted sum but the weights of criteria are initially unknown. We then explain how to interweave preference elicitation and search to quickly determine a near-optimal solution with a limited number of preference queries. This leads us to successively introduce an interactive version of dynamic programming, greedy search, and branch and bound to solve the problems under consideration. We then present numerical tests showing the practical efficiency of these algorithms that achieve a good compromise between the number of queries asked and the solution times.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
10.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信