核回归估计中的非参数偏差约简方法

IF 0.8 Q3 STATISTICS & PROBABILITY
Y. Slaoui
{"title":"核回归估计中的非参数偏差约简方法","authors":"Y. Slaoui","doi":"10.1515/mcma-2022-2130","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we propose and investigate two new kernel regression estimators based on a bias reduction transformation technique. We study the properties of these estimators and compare them with Nadaraya–Watson’s regression estimator and Slaoui’s (2016) regression estimator. It turns out that, with an adequate choice of the parameters of the two proposed estimators, the rate of convergence of two estimators will be faster than the two classical estimators, and the asymptotic MISE (mean integrated squared error) will be smaller than the two classical estimators. We corroborate these theoretical results through simulations and a real Malaria dataset.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"29 1","pages":"55 - 77"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methodology for nonparametric bias reduction in kernel regression estimation\",\"authors\":\"Y. Slaoui\",\"doi\":\"10.1515/mcma-2022-2130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we propose and investigate two new kernel regression estimators based on a bias reduction transformation technique. We study the properties of these estimators and compare them with Nadaraya–Watson’s regression estimator and Slaoui’s (2016) regression estimator. It turns out that, with an adequate choice of the parameters of the two proposed estimators, the rate of convergence of two estimators will be faster than the two classical estimators, and the asymptotic MISE (mean integrated squared error) will be smaller than the two classical estimators. We corroborate these theoretical results through simulations and a real Malaria dataset.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"29 1\",\"pages\":\"55 - 77\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2022-2130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2022-2130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要在本文中,我们提出并研究了两种新的基于偏差减少变换技术的核回归估计量。我们研究了这些估计量的性质,并将其与Nadaraya–Watson回归估计量和Slaoui(2016)回归估计量进行了比较。结果表明,在适当选择两个估计量的参数的情况下,两个估计的收敛速度将快于两个经典估计量,并且渐近均方误差将小于两个经典估算量。我们通过模拟和真实的疟疾数据集证实了这些理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methodology for nonparametric bias reduction in kernel regression estimation
Abstract In this paper, we propose and investigate two new kernel regression estimators based on a bias reduction transformation technique. We study the properties of these estimators and compare them with Nadaraya–Watson’s regression estimator and Slaoui’s (2016) regression estimator. It turns out that, with an adequate choice of the parameters of the two proposed estimators, the rate of convergence of two estimators will be faster than the two classical estimators, and the asymptotic MISE (mean integrated squared error) will be smaller than the two classical estimators. We corroborate these theoretical results through simulations and a real Malaria dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信