AF代数的Fell拓扑及其量子逼近性

IF 0.7 4区 数学 Q2 MATHEMATICS
Konrad Aguilar
{"title":"AF代数的Fell拓扑及其量子逼近性","authors":"Konrad Aguilar","doi":"10.7900/jot.2018jun13.2222","DOIUrl":null,"url":null,"abstract":"We introduce a topology on the ideal space of any C∗-inductive limit built by an inverse limit of topologies and produce conditions for when this topology agrees with the Fell topology. With this topology, we impart criteria for when convergence of ideals of an AF-algebra can provide convergence of quotients in the quantum Gromov--Hausdorff propinquity building from previous joint work with Latr\\'{e}moli\\`{e}re. This bestows a continuous map from a class of ideals of the Boca--Mundici AF-algebra equipped with various topologies, including Jacobson and Fell topologies, to the space of quotients equipped with the propinquity topology.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Fell topologies for AF-algebras and the quantum propinquity\",\"authors\":\"Konrad Aguilar\",\"doi\":\"10.7900/jot.2018jun13.2222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a topology on the ideal space of any C∗-inductive limit built by an inverse limit of topologies and produce conditions for when this topology agrees with the Fell topology. With this topology, we impart criteria for when convergence of ideals of an AF-algebra can provide convergence of quotients in the quantum Gromov--Hausdorff propinquity building from previous joint work with Latr\\\\'{e}moli\\\\`{e}re. This bestows a continuous map from a class of ideals of the Boca--Mundici AF-algebra equipped with various topologies, including Jacobson and Fell topologies, to the space of quotients equipped with the propinquity topology.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2018jun13.2222\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2018jun13.2222","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

我们引入了由拓扑的逆极限建立的任何C*-感应极限的理想空间上的拓扑,并给出了该拓扑何时与Fell拓扑一致的条件。利用这种拓扑结构,我们给出了AF代数理想的收敛性何时可以在量子Gromov-Hausdorff不等式构建中提供商的收敛性的标准,这是以前与Latr的联合工作得出的{e}moli\`{e}re.这给出了一个连续映射,从配备有各种拓扑的Boca-Mundici AF代数的一类理想,包括Jacobson和Fell拓扑,到配备有近似拓扑的商空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fell topologies for AF-algebras and the quantum propinquity
We introduce a topology on the ideal space of any C∗-inductive limit built by an inverse limit of topologies and produce conditions for when this topology agrees with the Fell topology. With this topology, we impart criteria for when convergence of ideals of an AF-algebra can provide convergence of quotients in the quantum Gromov--Hausdorff propinquity building from previous joint work with Latr\'{e}moli\`{e}re. This bestows a continuous map from a class of ideals of the Boca--Mundici AF-algebra equipped with various topologies, including Jacobson and Fell topologies, to the space of quotients equipped with the propinquity topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信