{"title":"各向异性Orlicz-Sobolev空间中强非线性耦合系统解的存在性及其数值逼近","authors":"F. Ortegón Gallego, Hakima Ouyahya, M. Rhoudaf","doi":"10.58997/ejde.2022.84","DOIUrl":null,"url":null,"abstract":"We study the existence of a capacity solution for a nonlinear elliptic coupled system in anisotropic Orlicz-Sobolev spaces. The unknowns are the temperature inside a semiconductor material, and the electric potential. This system may be considered as a generalization of the steady-state thermistor problem. The numerical solution is also analyzed by means of the least squares method in combination with a conjugate gradient technique.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of a solution and its numerical approximation for a strongly nonlinear coupled system in anisotropic Orlicz-Sobolev spaces\",\"authors\":\"F. Ortegón Gallego, Hakima Ouyahya, M. Rhoudaf\",\"doi\":\"10.58997/ejde.2022.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the existence of a capacity solution for a nonlinear elliptic coupled system in anisotropic Orlicz-Sobolev spaces. The unknowns are the temperature inside a semiconductor material, and the electric potential. This system may be considered as a generalization of the steady-state thermistor problem. The numerical solution is also analyzed by means of the least squares method in combination with a conjugate gradient technique.\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2022.84\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2022.84","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Existence of a solution and its numerical approximation for a strongly nonlinear coupled system in anisotropic Orlicz-Sobolev spaces
We study the existence of a capacity solution for a nonlinear elliptic coupled system in anisotropic Orlicz-Sobolev spaces. The unknowns are the temperature inside a semiconductor material, and the electric potential. This system may be considered as a generalization of the steady-state thermistor problem. The numerical solution is also analyzed by means of the least squares method in combination with a conjugate gradient technique.
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.