各向异性Orlicz-Sobolev空间中强非线性耦合系统解的存在性及其数值逼近

IF 1 4区 数学 Q2 MATHEMATICS
F. Ortegón Gallego, Hakima Ouyahya, M. Rhoudaf
{"title":"各向异性Orlicz-Sobolev空间中强非线性耦合系统解的存在性及其数值逼近","authors":"F. Ortegón Gallego, Hakima Ouyahya, M. Rhoudaf","doi":"10.58997/ejde.2022.84","DOIUrl":null,"url":null,"abstract":"We study the existence of a capacity solution for a nonlinear elliptic coupled system in anisotropic Orlicz-Sobolev spaces. The unknowns are the temperature inside a semiconductor material, and the electric potential. This system may be considered as a generalization of the steady-state thermistor problem. The numerical solution is also analyzed by means of the least squares method in combination with a conjugate gradient technique.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of a solution and its numerical approximation for a strongly nonlinear coupled system in anisotropic Orlicz-Sobolev spaces\",\"authors\":\"F. Ortegón Gallego, Hakima Ouyahya, M. Rhoudaf\",\"doi\":\"10.58997/ejde.2022.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the existence of a capacity solution for a nonlinear elliptic coupled system in anisotropic Orlicz-Sobolev spaces. The unknowns are the temperature inside a semiconductor material, and the electric potential. This system may be considered as a generalization of the steady-state thermistor problem. The numerical solution is also analyzed by means of the least squares method in combination with a conjugate gradient technique.\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2022.84\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2022.84","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了各向异性Orlicz-Sobolev空间中非线性椭圆耦合系统容量解的存在性。未知的是半导体材料内部的温度和电势。该系统可以被认为是稳态热敏电阻问题的推广。数值解也通过最小二乘法结合共轭梯度技术进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of a solution and its numerical approximation for a strongly nonlinear coupled system in anisotropic Orlicz-Sobolev spaces
We study the existence of a capacity solution for a nonlinear elliptic coupled system in anisotropic Orlicz-Sobolev spaces. The unknowns are the temperature inside a semiconductor material, and the electric potential. This system may be considered as a generalization of the steady-state thermistor problem. The numerical solution is also analyzed by means of the least squares method in combination with a conjugate gradient technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信