{"title":"任意变量函数偏导数的代数独立性","authors":"Haruki Ide, Taka-aki Tanaka","doi":"10.1016/j.indag.2023.07.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>We construct a complex entire function with arbitrary number of variables which has the following property: The infinite set consisting of all the values of all its partial derivatives of any orders at all algebraic points, including zero components, is algebraically independent. In Section 2 of this paper, we develop a technique involving linear isomorphisms<span> and infinite products to replace the algebraic independence of the values of functions in question with that of functions easier to deal with. In Sections 2 and 3, using the technique together with Mahler’s method, we can reduce the algebraic independence of the infinite set mentioned above to the linear independence of certain rational functions </span></span>modulo the rational function field of many variables. The latter one is solved by the discussions involving a certain valuation and a generic point in Sections 3 and 4.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"34 6","pages":"Pages 1397-1418"},"PeriodicalIF":0.5000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic independence of the partial derivatives of certain functions with arbitrary number of variables\",\"authors\":\"Haruki Ide, Taka-aki Tanaka\",\"doi\":\"10.1016/j.indag.2023.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We construct a complex entire function with arbitrary number of variables which has the following property: The infinite set consisting of all the values of all its partial derivatives of any orders at all algebraic points, including zero components, is algebraically independent. In Section 2 of this paper, we develop a technique involving linear isomorphisms<span> and infinite products to replace the algebraic independence of the values of functions in question with that of functions easier to deal with. In Sections 2 and 3, using the technique together with Mahler’s method, we can reduce the algebraic independence of the infinite set mentioned above to the linear independence of certain rational functions </span></span>modulo the rational function field of many variables. The latter one is solved by the discussions involving a certain valuation and a generic point in Sections 3 and 4.</p></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"34 6\",\"pages\":\"Pages 1397-1418\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357723000678\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000678","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Algebraic independence of the partial derivatives of certain functions with arbitrary number of variables
We construct a complex entire function with arbitrary number of variables which has the following property: The infinite set consisting of all the values of all its partial derivatives of any orders at all algebraic points, including zero components, is algebraically independent. In Section 2 of this paper, we develop a technique involving linear isomorphisms and infinite products to replace the algebraic independence of the values of functions in question with that of functions easier to deal with. In Sections 2 and 3, using the technique together with Mahler’s method, we can reduce the algebraic independence of the infinite set mentioned above to the linear independence of certain rational functions modulo the rational function field of many variables. The latter one is solved by the discussions involving a certain valuation and a generic point in Sections 3 and 4.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.