某平面曲线正特性对偶曲线的奇异性

IF 0.4 4区 数学 Q4 MATHEMATICS
K. Komeda
{"title":"某平面曲线正特性对偶曲线的奇异性","authors":"K. Komeda","doi":"10.2996/kmj44110","DOIUrl":null,"url":null,"abstract":"It is well known that the Gauss map for a complex plane curve is birational, whereas the Gauss map in positive characteristic is not always birational. Let $q$ be a power of a prime integer. We study a certain plane curve of degree $q^2+q+1$ for which the Gauss map is inseparable with inseparable degree $q$. As a special case, we show a relation between the dual curve of the Fermat curve of degree $q^2+q+1$ and the Ballico-Hefez curve.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singularities of the dual curve of a certain plane curve in positive characteristic\",\"authors\":\"K. Komeda\",\"doi\":\"10.2996/kmj44110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that the Gauss map for a complex plane curve is birational, whereas the Gauss map in positive characteristic is not always birational. Let $q$ be a power of a prime integer. We study a certain plane curve of degree $q^2+q+1$ for which the Gauss map is inseparable with inseparable degree $q$. As a special case, we show a relation between the dual curve of the Fermat curve of degree $q^2+q+1$ and the Ballico-Hefez curve.\",\"PeriodicalId\":54747,\"journal\":{\"name\":\"Kodai Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2996/kmj44110\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2996/kmj44110","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,复平面曲线的高斯映射是对偶的,而正特性的高斯映射并不总是对偶的。设$q$是一个素数的幂。我们研究了一个次为$q^2+q+1$的平面曲线,其中高斯映射与不可分次$q$是不可分的。作为一个特例,我们给出了阶为$q^2+q+1$的Fermat曲线的对偶曲线与Ballico-Hefez曲线之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singularities of the dual curve of a certain plane curve in positive characteristic
It is well known that the Gauss map for a complex plane curve is birational, whereas the Gauss map in positive characteristic is not always birational. Let $q$ be a power of a prime integer. We study a certain plane curve of degree $q^2+q+1$ for which the Gauss map is inseparable with inseparable degree $q$. As a special case, we show a relation between the dual curve of the Fermat curve of degree $q^2+q+1$ and the Ballico-Hefez curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信