人工智能文档:责任之路

Florian Königstorfer, Stefan Thalmann
{"title":"人工智能文档:责任之路","authors":"Florian Königstorfer,&nbsp;Stefan Thalmann","doi":"10.1016/j.jrt.2022.100043","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial Intelligence (AI) promises huge potential for businesses but due to its black-box character has also substantial drawbacks. This is a particular challenge in regulated use cases, where software needs to be certified or validated before deployment. Traditional software documentation is not sufficient to provide the required evidence to auditors and AI-specific guidelines are not available yet. Thus, AI faces significant adoption barriers in regulated use cases, since accountability of AI cannot be ensured to a sufficient extent. This interview study aims to determine the current state of documenting AI in regulated use cases. We found that the risk level of AI use cases has an impact on the AI adoption and the scope of AI documentation. Further, we discuss how AI is currently documented and which challenges practitioners face when documenting AI.</p></div>","PeriodicalId":73937,"journal":{"name":"Journal of responsible technology","volume":"11 ","pages":"Article 100043"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666659622000208/pdfft?md5=bb63316f230d774001f337edc4c0fa62&pid=1-s2.0-S2666659622000208-main.pdf","citationCount":"9","resultStr":"{\"title\":\"AI Documentation: A path to accountability\",\"authors\":\"Florian Königstorfer,&nbsp;Stefan Thalmann\",\"doi\":\"10.1016/j.jrt.2022.100043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Artificial Intelligence (AI) promises huge potential for businesses but due to its black-box character has also substantial drawbacks. This is a particular challenge in regulated use cases, where software needs to be certified or validated before deployment. Traditional software documentation is not sufficient to provide the required evidence to auditors and AI-specific guidelines are not available yet. Thus, AI faces significant adoption barriers in regulated use cases, since accountability of AI cannot be ensured to a sufficient extent. This interview study aims to determine the current state of documenting AI in regulated use cases. We found that the risk level of AI use cases has an impact on the AI adoption and the scope of AI documentation. Further, we discuss how AI is currently documented and which challenges practitioners face when documenting AI.</p></div>\",\"PeriodicalId\":73937,\"journal\":{\"name\":\"Journal of responsible technology\",\"volume\":\"11 \",\"pages\":\"Article 100043\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666659622000208/pdfft?md5=bb63316f230d774001f337edc4c0fa62&pid=1-s2.0-S2666659622000208-main.pdf\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of responsible technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666659622000208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of responsible technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666659622000208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

人工智能(AI)为企业带来了巨大的潜力,但由于它的黑箱特性,也存在很大的缺陷。在规范的用例中,这是一个特别的挑战,在部署之前需要对软件进行认证或验证。传统的软件文档不足以向审核员提供所需的证据,而且目前还没有针对人工智能的指导方针。因此,人工智能在受监管的用例中面临着重大的采用障碍,因为人工智能的问责制不能得到充分的保证。本访谈研究旨在确定在规范用例中记录人工智能的当前状态。我们发现,人工智能用例的风险水平对人工智能的采用和人工智能文档的范围有影响。此外,我们讨论了人工智能目前是如何记录的,以及从业者在记录人工智能时面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI Documentation: A path to accountability

Artificial Intelligence (AI) promises huge potential for businesses but due to its black-box character has also substantial drawbacks. This is a particular challenge in regulated use cases, where software needs to be certified or validated before deployment. Traditional software documentation is not sufficient to provide the required evidence to auditors and AI-specific guidelines are not available yet. Thus, AI faces significant adoption barriers in regulated use cases, since accountability of AI cannot be ensured to a sufficient extent. This interview study aims to determine the current state of documenting AI in regulated use cases. We found that the risk level of AI use cases has an impact on the AI adoption and the scope of AI documentation. Further, we discuss how AI is currently documented and which challenges practitioners face when documenting AI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of responsible technology
Journal of responsible technology Information Systems, Artificial Intelligence, Human-Computer Interaction
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
168 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信