基于贝叶斯推理的强耦合成分模型经验训练方法

IF 0.5 Q4 ENGINEERING, MECHANICAL
G. Flynn, Evan Chodora, S. Atamturktur, D. Brown
{"title":"基于贝叶斯推理的强耦合成分模型经验训练方法","authors":"G. Flynn, Evan Chodora, S. Atamturktur, D. Brown","doi":"10.1115/1.4044804","DOIUrl":null,"url":null,"abstract":"\n Partitioned analysis enables numerical representation of complex systems through the coupling of smaller, simpler constituent models, each representing a different phenomenon, domain, scale, or functional component. Through this coupling, inputs and outputs of constituent models are exchanged in an iterative manner until a converged solution satisfies all constituents. In practical applications, numerical models may not be available for all constituents due to lack of understanding of the behavior of a constituent and the inability to conduct separate-effect experiments to investigate the behavior of the constituent in an isolated manner. In such cases, empirical representations of missing constituents have the opportunity to be inferred using integral-effect experiments, which capture the behavior of the system as a whole. Herein, we propose a Bayesian inference-based approach to estimate missing constituent models from available integral-effect experiments. Significance of this novel approach is demonstrated through the inference of a material plasticity constituent integrated with a finite element model to enable efficient multiscale elasto-plastic simulations.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Bayesian Inference-Based Approach to Empirical Training of Strongly Coupled Constituent Models\",\"authors\":\"G. Flynn, Evan Chodora, S. Atamturktur, D. Brown\",\"doi\":\"10.1115/1.4044804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Partitioned analysis enables numerical representation of complex systems through the coupling of smaller, simpler constituent models, each representing a different phenomenon, domain, scale, or functional component. Through this coupling, inputs and outputs of constituent models are exchanged in an iterative manner until a converged solution satisfies all constituents. In practical applications, numerical models may not be available for all constituents due to lack of understanding of the behavior of a constituent and the inability to conduct separate-effect experiments to investigate the behavior of the constituent in an isolated manner. In such cases, empirical representations of missing constituents have the opportunity to be inferred using integral-effect experiments, which capture the behavior of the system as a whole. Herein, we propose a Bayesian inference-based approach to estimate missing constituent models from available integral-effect experiments. Significance of this novel approach is demonstrated through the inference of a material plasticity constituent integrated with a finite element model to enable efficient multiscale elasto-plastic simulations.\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4044804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4044804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

分区分析通过耦合更小、更简单的组成模型来实现复杂系统的数值表示,每个模型代表不同的现象、领域、规模或功能组件。通过这种耦合,组成模型的输入和输出以迭代的方式交换,直到收敛的解满足所有组成。在实际应用中,由于对成分的行为缺乏了解,并且无法进行单独的效应实验以孤立的方式研究成分的行为,数值模型可能不适用于所有成分。在这种情况下,缺失成分的经验表示有机会使用积分效应实验来推断,积分效应实验捕捉了整个系统的行为。在此,我们提出了一种基于贝叶斯推理的方法,从可用的积分效应实验中估计缺失的组成模型。通过将材料塑性成分与有限元模型相结合的推断来实现有效的多尺度弹塑性模拟,证明了这种新方法的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian Inference-Based Approach to Empirical Training of Strongly Coupled Constituent Models
Partitioned analysis enables numerical representation of complex systems through the coupling of smaller, simpler constituent models, each representing a different phenomenon, domain, scale, or functional component. Through this coupling, inputs and outputs of constituent models are exchanged in an iterative manner until a converged solution satisfies all constituents. In practical applications, numerical models may not be available for all constituents due to lack of understanding of the behavior of a constituent and the inability to conduct separate-effect experiments to investigate the behavior of the constituent in an isolated manner. In such cases, empirical representations of missing constituents have the opportunity to be inferred using integral-effect experiments, which capture the behavior of the system as a whole. Herein, we propose a Bayesian inference-based approach to estimate missing constituent models from available integral-effect experiments. Significance of this novel approach is demonstrated through the inference of a material plasticity constituent integrated with a finite element model to enable efficient multiscale elasto-plastic simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信