具有不连续初始条件的拟线性波动方程Cauchy问题的经典解

IF 0.1 Q4 MULTIDISCIPLINARY SCIENCES
V. I. Korzyuk, J. V. Rudzko
{"title":"具有不连续初始条件的拟线性波动方程Cauchy问题的经典解","authors":"V. I. Korzyuk, J. V. Rudzko","doi":"10.29235/1561-8323-2023-67-3-183-188","DOIUrl":null,"url":null,"abstract":"We consider the Cauchy problem for a one-dimensional weakly quasi-linear wave equation given in the upper half-plane. The initial conditions have a first-kind discontinuity at one point. We construct the solution using the method of characteristics in implicit analytical form as a solution of some integro-differential equations. The solvability of these equations, as well the smoothness of their solutions, is studied. For the problem in question, we prove the uniqueness of the solution and establish the conditions, under which its classical solution exists.","PeriodicalId":41825,"journal":{"name":"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical solution of the Cauchy problem for a quasi-linear wave equation with discontinuous initial conditions\",\"authors\":\"V. I. Korzyuk, J. V. Rudzko\",\"doi\":\"10.29235/1561-8323-2023-67-3-183-188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Cauchy problem for a one-dimensional weakly quasi-linear wave equation given in the upper half-plane. The initial conditions have a first-kind discontinuity at one point. We construct the solution using the method of characteristics in implicit analytical form as a solution of some integro-differential equations. The solvability of these equations, as well the smoothness of their solutions, is studied. For the problem in question, we prove the uniqueness of the solution and establish the conditions, under which its classical solution exists.\",\"PeriodicalId\":41825,\"journal\":{\"name\":\"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-8323-2023-67-3-183-188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2023-67-3-183-188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了在上半平面上给出的一维弱拟线性波动方程的Cauchy问题。初始条件在某一点上具有第一类不连续性。我们使用隐式分析形式的特征方法构造了一些积分微分方程的解。研究了这些方程的可解性及其解的光滑性。对于所讨论的问题,我们证明了解的唯一性,并建立了其经典解存在的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classical solution of the Cauchy problem for a quasi-linear wave equation with discontinuous initial conditions
We consider the Cauchy problem for a one-dimensional weakly quasi-linear wave equation given in the upper half-plane. The initial conditions have a first-kind discontinuity at one point. We construct the solution using the method of characteristics in implicit analytical form as a solution of some integro-differential equations. The solvability of these equations, as well the smoothness of their solutions, is studied. For the problem in question, we prove the uniqueness of the solution and establish the conditions, under which its classical solution exists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI
DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
69
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信