利用贝叶斯目标函数优化估计物理模型并量化其不确定性

IF 0.5 Q4 ENGINEERING, MECHANICAL
Stephen A. Andrews, A. Fraser
{"title":"利用贝叶斯目标函数优化估计物理模型并量化其不确定性","authors":"Stephen A. Andrews, A. Fraser","doi":"10.1115/1.4043807","DOIUrl":null,"url":null,"abstract":"This paper reports a verification study for a method that fits functions to sets of data from several experiments simultaneously. The method finds a maximum a posteriori probability estimate of a function subject to constraints (e.g., convexity in the study), uncertainty about the estimate, and a quantitative characterization of how data from each experiment constrains that uncertainty. While this work focuses on a model of the equation of state (EOS) of gasses produced by detonating a high explosive, the method can be applied to a wide range of physics processes with either parametric or semiparametric models. As a verification exercise, a reference EOS is used and artificial experimental data sets are created using numerical integration of ordinary differential equations and pseudo-random noise. The method yields an estimate of the EOS that is close to the reference and identifies how each experiment most constrains the result.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Estimating Physics Models and Quantifying Their Uncertainty Using Optimization With a Bayesian Objective Function\",\"authors\":\"Stephen A. Andrews, A. Fraser\",\"doi\":\"10.1115/1.4043807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a verification study for a method that fits functions to sets of data from several experiments simultaneously. The method finds a maximum a posteriori probability estimate of a function subject to constraints (e.g., convexity in the study), uncertainty about the estimate, and a quantitative characterization of how data from each experiment constrains that uncertainty. While this work focuses on a model of the equation of state (EOS) of gasses produced by detonating a high explosive, the method can be applied to a wide range of physics processes with either parametric or semiparametric models. As a verification exercise, a reference EOS is used and artificial experimental data sets are created using numerical integration of ordinary differential equations and pseudo-random noise. The method yields an estimate of the EOS that is close to the reference and identifies how each experiment most constrains the result.\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4043807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4043807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 8

摘要

本文报告了一种方法的验证研究,该方法将函数同时拟合到来自多个实验的数据集。该方法找到了一个函数的最大后验概率估计,该函数受约束(例如,研究中的凸性)、估计的不确定性以及每个实验的数据如何约束该不确定性的定量表征。虽然这项工作的重点是引爆烈性炸药产生的气体的状态方程(EOS)模型,但该方法可以应用于参数或半参数模型的广泛物理过程。作为验证练习,使用参考EOS,并使用常微分方程和伪随机噪声的数值积分创建人工实验数据集。该方法产生了接近参考的EOS估计,并确定了每个实验如何最大限度地限制结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Physics Models and Quantifying Their Uncertainty Using Optimization With a Bayesian Objective Function
This paper reports a verification study for a method that fits functions to sets of data from several experiments simultaneously. The method finds a maximum a posteriori probability estimate of a function subject to constraints (e.g., convexity in the study), uncertainty about the estimate, and a quantitative characterization of how data from each experiment constrains that uncertainty. While this work focuses on a model of the equation of state (EOS) of gasses produced by detonating a high explosive, the method can be applied to a wide range of physics processes with either parametric or semiparametric models. As a verification exercise, a reference EOS is used and artificial experimental data sets are created using numerical integration of ordinary differential equations and pseudo-random noise. The method yields an estimate of the EOS that is close to the reference and identifies how each experiment most constrains the result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信