二次判别函数渐近逼近的可计算误差界

Pub Date : 2020-11-01 DOI:10.32917/hmj/1607396491
Y. Fujikoshi
{"title":"二次判别函数渐近逼近的可计算误差界","authors":"Y. Fujikoshi","doi":"10.32917/hmj/1607396491","DOIUrl":null,"url":null,"abstract":"A bstract . This paper is concerned with computable error bounds for asymptotic approximations of the expected probabilities of misclassification (EPMC) of the quadratic discriminant function Q . A location and scale mixture expression for Q is given as a special case of a general discriminant function including the linear and quadratic discriminant functions. Using the result, we provide computable error bounds for asymptotic approximations of the EPMC of Q when both the sample size and the dimensionality are large. The bounds are numerically explored. Similar results are given for a quadratic discriminant function Q 0 when the covariance matrix is known.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computable error bounds for asymptotic approximations of the quadratic discriminant function\",\"authors\":\"Y. Fujikoshi\",\"doi\":\"10.32917/hmj/1607396491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bstract . This paper is concerned with computable error bounds for asymptotic approximations of the expected probabilities of misclassification (EPMC) of the quadratic discriminant function Q . A location and scale mixture expression for Q is given as a special case of a general discriminant function including the linear and quadratic discriminant functions. Using the result, we provide computable error bounds for asymptotic approximations of the EPMC of Q when both the sample size and the dimensionality are large. The bounds are numerically explored. Similar results are given for a quadratic discriminant function Q 0 when the covariance matrix is known.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/hmj/1607396491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/hmj/1607396491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要。本文研究了二次判别函数Q的期望误分类概率(EPMC)的渐近近似的可计算误差界。作为包括线性和二次判别函数的一般判别函数的特例,给出了Q的位置和尺度混合表达式。利用该结果,当样本量和维数都很大时,我们为Q的EPMC的渐近近似提供了可计算的误差界。对边界进行了数值探索。当协方差矩阵已知时,对于二次判别函数Q 0给出了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Computable error bounds for asymptotic approximations of the quadratic discriminant function
A bstract . This paper is concerned with computable error bounds for asymptotic approximations of the expected probabilities of misclassification (EPMC) of the quadratic discriminant function Q . A location and scale mixture expression for Q is given as a special case of a general discriminant function including the linear and quadratic discriminant functions. Using the result, we provide computable error bounds for asymptotic approximations of the EPMC of Q when both the sample size and the dimensionality are large. The bounds are numerically explored. Similar results are given for a quadratic discriminant function Q 0 when the covariance matrix is known.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信