基于容积公式的分布参数不确定结构的有效重要性分析方法

Q3 Engineering
Junchao Liu, Luyi Li
{"title":"基于容积公式的分布参数不确定结构的有效重要性分析方法","authors":"Junchao Liu, Luyi Li","doi":"10.1051/jnwpu/20224061212","DOIUrl":null,"url":null,"abstract":"The importance analysis of a structural system with distribution parameter uncertainty can identify key parameters that significantly affect its output performance, thus providing importance guidance for its design and optimization. However, the traditional importance analysis method requires the three-loop Monte Carlo sampling to estimate the importance measurement index of a distribution parameter with such output characteristic values as mean and variance, whose computational cost is too large. To solve this problem, two efficient cubature formula methods based on the surrogate sampling probability density function (SSPDF) for the importance analysis of distribution parameters are proposed: ①the double-loop cubature formula based on the surrogate sampling probability density function (S-DLCF); ②the single-loop cubature formula based on the surrogate sampling probability density function (S-SLCF). The two methods use cubature formulas to efficiently compute the nested mean and variance in the importance measurement index of a distribution parameter, thus solving the problem that the computational effort of propagating parameter uncertainty to output characteristic values depends on parameter dimensionality because of SSPDF. The S-DLCF makes full use of the efficiency and accuracy of the cubature formula to estimate output statistical moments; the S-SLCF simplifies the integral to calculate output moments by expanding the dimensionality of the distribution parameter. The numerical and engineering examples verify the efficiency and accuracy of the two methods for the importance analysis of distribution parameters.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient importance analysis methods for structures with distribution parameter uncertainty based on cubature formula\",\"authors\":\"Junchao Liu, Luyi Li\",\"doi\":\"10.1051/jnwpu/20224061212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The importance analysis of a structural system with distribution parameter uncertainty can identify key parameters that significantly affect its output performance, thus providing importance guidance for its design and optimization. However, the traditional importance analysis method requires the three-loop Monte Carlo sampling to estimate the importance measurement index of a distribution parameter with such output characteristic values as mean and variance, whose computational cost is too large. To solve this problem, two efficient cubature formula methods based on the surrogate sampling probability density function (SSPDF) for the importance analysis of distribution parameters are proposed: ①the double-loop cubature formula based on the surrogate sampling probability density function (S-DLCF); ②the single-loop cubature formula based on the surrogate sampling probability density function (S-SLCF). The two methods use cubature formulas to efficiently compute the nested mean and variance in the importance measurement index of a distribution parameter, thus solving the problem that the computational effort of propagating parameter uncertainty to output characteristic values depends on parameter dimensionality because of SSPDF. The S-DLCF makes full use of the efficiency and accuracy of the cubature formula to estimate output statistical moments; the S-SLCF simplifies the integral to calculate output moments by expanding the dimensionality of the distribution parameter. The numerical and engineering examples verify the efficiency and accuracy of the two methods for the importance analysis of distribution parameters.\",\"PeriodicalId\":39691,\"journal\":{\"name\":\"西北工业大学学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"西北工业大学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1051/jnwpu/20224061212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"西北工业大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/jnwpu/20224061212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

具有分布参数不确定性的结构系统的重要性分析可以识别出对其输出性能有重大影响的关键参数,从而为其设计和优化提供重要指导。然而,传统的重要性分析方法需要三回路蒙特卡罗采样来估计具有均值和方差等输出特征值的分布参数的重要性测量指标,其计算成本太大。针对这一问题,提出了两种基于替代采样概率密度函数(SSPDF)的分布参数重要性分析的有效容积公式方法:①基于替代采样几率密度函数(S-DLCF)的双环容积公式;②基于替代采样概率密度函数(S-SLCF)的单循环容积公式。这两种方法使用求积公式有效地计算分布参数的重要性测量指标中的嵌套均值和方差,从而解决了由于SSPDF而导致的将参数不确定性传播到输出特征值的计算工作量依赖于参数维度的问题。S-DLCF充分利用容积公式的有效性和准确性来估计输出统计矩;S-SLCF通过扩展分布参数的维数来简化积分以计算输出矩。数值和工程算例验证了这两种方法对分布参数重要性分析的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient importance analysis methods for structures with distribution parameter uncertainty based on cubature formula
The importance analysis of a structural system with distribution parameter uncertainty can identify key parameters that significantly affect its output performance, thus providing importance guidance for its design and optimization. However, the traditional importance analysis method requires the three-loop Monte Carlo sampling to estimate the importance measurement index of a distribution parameter with such output characteristic values as mean and variance, whose computational cost is too large. To solve this problem, two efficient cubature formula methods based on the surrogate sampling probability density function (SSPDF) for the importance analysis of distribution parameters are proposed: ①the double-loop cubature formula based on the surrogate sampling probability density function (S-DLCF); ②the single-loop cubature formula based on the surrogate sampling probability density function (S-SLCF). The two methods use cubature formulas to efficiently compute the nested mean and variance in the importance measurement index of a distribution parameter, thus solving the problem that the computational effort of propagating parameter uncertainty to output characteristic values depends on parameter dimensionality because of SSPDF. The S-DLCF makes full use of the efficiency and accuracy of the cubature formula to estimate output statistical moments; the S-SLCF simplifies the integral to calculate output moments by expanding the dimensionality of the distribution parameter. The numerical and engineering examples verify the efficiency and accuracy of the two methods for the importance analysis of distribution parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
西北工业大学学报
西北工业大学学报 Engineering-Engineering (all)
CiteScore
1.30
自引率
0.00%
发文量
6201
审稿时长
12 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信