{"title":"基于改进掩模R-CNN的多模式虹膜视网膜生物识别方法实现信息安全","authors":"Mohamed A. El-Sayed, Mohammed A. Abdel- Latif","doi":"10.32985/ijeces.14.6.5","DOIUrl":null,"url":null,"abstract":"The need for reliable user recognition (identification/authentication) techniques has grown in response to heightened security concerns and accelerated advances in networking, communication, and mobility. Biometrics, defined as the science of recognizing an individual based on his or her physical or behavioral characteristics, is gaining recognition as a method for determining an individual's identity. Various commercial, civilian, and forensic applications now use biometric systems to establish identity. The purpose of this paper is to design an efficient multimodal biometric system based on iris and retinal features to assure accurate human recognition and improve the accuracy of recognition using deep learning techniques. Deep learning models were tested using retinographies and iris images acquired from the MESSIDOR and CASIA-IrisV1 databases for the same person. The Iris region was segmented from the image using the custom Mask R-CNN method, and the unique blood vessels were segmented from retinal images of the same person using principal curvature. Then, in order to aid precise recognition, they optimally extract significant information from the segmented images of the iris and retina. The suggested model attained 98% accuracy, 98.1% recall, and 98.1% precision. It has been discovered that using a custom Mask R-CNN approach on Iris-Retina images improves efficiency and accuracy in person recognition.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving Information Security by multi-Modal Iris-Retina Biometric Approach Using Improved Mask R-CNN\",\"authors\":\"Mohamed A. El-Sayed, Mohammed A. Abdel- Latif\",\"doi\":\"10.32985/ijeces.14.6.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for reliable user recognition (identification/authentication) techniques has grown in response to heightened security concerns and accelerated advances in networking, communication, and mobility. Biometrics, defined as the science of recognizing an individual based on his or her physical or behavioral characteristics, is gaining recognition as a method for determining an individual's identity. Various commercial, civilian, and forensic applications now use biometric systems to establish identity. The purpose of this paper is to design an efficient multimodal biometric system based on iris and retinal features to assure accurate human recognition and improve the accuracy of recognition using deep learning techniques. Deep learning models were tested using retinographies and iris images acquired from the MESSIDOR and CASIA-IrisV1 databases for the same person. The Iris region was segmented from the image using the custom Mask R-CNN method, and the unique blood vessels were segmented from retinal images of the same person using principal curvature. Then, in order to aid precise recognition, they optimally extract significant information from the segmented images of the iris and retina. The suggested model attained 98% accuracy, 98.1% recall, and 98.1% precision. It has been discovered that using a custom Mask R-CNN approach on Iris-Retina images improves efficiency and accuracy in person recognition.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.6.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.6.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Achieving Information Security by multi-Modal Iris-Retina Biometric Approach Using Improved Mask R-CNN
The need for reliable user recognition (identification/authentication) techniques has grown in response to heightened security concerns and accelerated advances in networking, communication, and mobility. Biometrics, defined as the science of recognizing an individual based on his or her physical or behavioral characteristics, is gaining recognition as a method for determining an individual's identity. Various commercial, civilian, and forensic applications now use biometric systems to establish identity. The purpose of this paper is to design an efficient multimodal biometric system based on iris and retinal features to assure accurate human recognition and improve the accuracy of recognition using deep learning techniques. Deep learning models were tested using retinographies and iris images acquired from the MESSIDOR and CASIA-IrisV1 databases for the same person. The Iris region was segmented from the image using the custom Mask R-CNN method, and the unique blood vessels were segmented from retinal images of the same person using principal curvature. Then, in order to aid precise recognition, they optimally extract significant information from the segmented images of the iris and retina. The suggested model attained 98% accuracy, 98.1% recall, and 98.1% precision. It has been discovered that using a custom Mask R-CNN approach on Iris-Retina images improves efficiency and accuracy in person recognition.
期刊介绍:
The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.