$L_p$积分曲率的$L_p$-Alekandrov问题

IF 1.3 1区 数学 Q1 MATHEMATICS
Yong Huang, E. Lutwak, Deane Yang, Gaoyong Zhang
{"title":"$L_p$积分曲率的$L_p$-Alekandrov问题","authors":"Yong Huang, E. Lutwak, Deane Yang, Gaoyong Zhang","doi":"10.4310/JDG/1536285625","DOIUrl":null,"url":null,"abstract":"It is shown that within the Lp-Brunn–Minkowski theory that Aleksandrov’s integral curvature has a natural Lp extension, for all real p. This raises the question of finding necessary and sufficient conditions on a given measure in order for it to be the Lp-integral curvature of a convex body. This problem is solved for positive p and is answered for negative p provided the given measure is even.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4310/JDG/1536285625","citationCount":"47","resultStr":"{\"title\":\"The $L_p$-Aleksandrov problem for $L_p$-integral curvature\",\"authors\":\"Yong Huang, E. Lutwak, Deane Yang, Gaoyong Zhang\",\"doi\":\"10.4310/JDG/1536285625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that within the Lp-Brunn–Minkowski theory that Aleksandrov’s integral curvature has a natural Lp extension, for all real p. This raises the question of finding necessary and sufficient conditions on a given measure in order for it to be the Lp-integral curvature of a convex body. This problem is solved for positive p and is answered for negative p provided the given measure is even.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4310/JDG/1536285625\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JDG/1536285625\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JDG/1536285625","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 47

摘要

结果表明,在Lp-Brunn–Minkowski理论中,Aleksandrov的积分曲率对所有实p都具有自然的Lp扩展。这就提出了在给定测度上寻找使其成为凸体的Lp积分曲率的充要条件的问题。这个问题对于正p是解决的,并且对于负p是回答的,前提是给定的测度是偶数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The $L_p$-Aleksandrov problem for $L_p$-integral curvature
It is shown that within the Lp-Brunn–Minkowski theory that Aleksandrov’s integral curvature has a natural Lp extension, for all real p. This raises the question of finding necessary and sufficient conditions on a given measure in order for it to be the Lp-integral curvature of a convex body. This problem is solved for positive p and is answered for negative p provided the given measure is even.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信