{"title":"基于机器学习的钢筋混凝土渐进倒塌优化设计","authors":"M. Esfandiari, Homa Haghighi, G. Urgessa","doi":"10.56748/ejse.233642","DOIUrl":null,"url":null,"abstract":"This paper investigated progressive collapse analysis of three-dimensional (3D) reinforced concrete (RC) frames that are optimized for carrying structural loads by introducing a unique simultaneous multi-column removal load path using Machine Learning. The investigation includes formulating an integrated computational framework that incorporates a self-training machine learning algorithm. This algorithm is used to train the largest machine learning models of 3D RC frames containing more than 600 optimized structures to predict the posterior based on the trained priors. The efficiency of the computational framework was shown by conducting a comprehensive study on the optimization and behavior of structures considering seismic loading, alternative load path due to progressive collapse, and second order (P–delta) effects. The results show that the proposed framework ensures that system solutions meet both structural integrity and constructability requirements of the ACI and the Unified Facilities Criteria.","PeriodicalId":52513,"journal":{"name":"Electronic Journal of Structural Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Learning-based Optimum Reinforced Concrete Design for Progressive Collapse\",\"authors\":\"M. Esfandiari, Homa Haghighi, G. Urgessa\",\"doi\":\"10.56748/ejse.233642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigated progressive collapse analysis of three-dimensional (3D) reinforced concrete (RC) frames that are optimized for carrying structural loads by introducing a unique simultaneous multi-column removal load path using Machine Learning. The investigation includes formulating an integrated computational framework that incorporates a self-training machine learning algorithm. This algorithm is used to train the largest machine learning models of 3D RC frames containing more than 600 optimized structures to predict the posterior based on the trained priors. The efficiency of the computational framework was shown by conducting a comprehensive study on the optimization and behavior of structures considering seismic loading, alternative load path due to progressive collapse, and second order (P–delta) effects. The results show that the proposed framework ensures that system solutions meet both structural integrity and constructability requirements of the ACI and the Unified Facilities Criteria.\",\"PeriodicalId\":52513,\"journal\":{\"name\":\"Electronic Journal of Structural Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56748/ejse.233642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.233642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Machine Learning-based Optimum Reinforced Concrete Design for Progressive Collapse
This paper investigated progressive collapse analysis of three-dimensional (3D) reinforced concrete (RC) frames that are optimized for carrying structural loads by introducing a unique simultaneous multi-column removal load path using Machine Learning. The investigation includes formulating an integrated computational framework that incorporates a self-training machine learning algorithm. This algorithm is used to train the largest machine learning models of 3D RC frames containing more than 600 optimized structures to predict the posterior based on the trained priors. The efficiency of the computational framework was shown by conducting a comprehensive study on the optimization and behavior of structures considering seismic loading, alternative load path due to progressive collapse, and second order (P–delta) effects. The results show that the proposed framework ensures that system solutions meet both structural integrity and constructability requirements of the ACI and the Unified Facilities Criteria.
期刊介绍:
The Electronic Journal of Structural Engineering (EJSE) is an international forum for the dissemination and discussion of leading edge research and practical applications in Structural Engineering. It comprises peer-reviewed technical papers, discussions and comments, and also news about conferences, workshops etc. in Structural Engineering. Original papers are invited from individuals involved in the field of structural engineering and construction. The areas of special interests include the following, but are not limited to: Analytical and design methods Bridges and High-rise Buildings Case studies and failure investigation Innovations in design and new technology New Construction Materials Performance of Structures Prefabrication Technology Repairs, Strengthening, and Maintenance Stability and Scaffolding Engineering Soil-structure interaction Standards and Codes of Practice Structural and solid mechanics Structural Safety and Reliability Testing Technologies Vibration, impact and structural dynamics Wind and earthquake engineering. EJSE is seeking original papers (research or state-of the art reviews) of the highest quality for consideration for publication. The papers will be published within 3 to 6 months. The papers are expected to make a significant contribution to the research and development activities of the academic and professional engineering community.