与最小相交填充对相关的Origamis

Pub Date : 2021-08-23 DOI:10.2140/pjm.2022.317.1
Tarik Aougab, W. Menasco, M. Nieland
{"title":"与最小相交填充对相关的Origamis","authors":"Tarik Aougab, W. Menasco, M. Nieland","doi":"10.2140/pjm.2022.317.1","DOIUrl":null,"url":null,"abstract":"Let $S_{g}$ denote the closed orientable surface of genus $g$. In joint work with Huang, the first author constructed exponentially-many (in $g$) mapping class group orbits of pairs of simple closed curves whose complement is a single topological disk. Using different techniques, we improve on this result by constructing factorially-many (again in $g$) such orbits. These new orbits are chosen so that the absolute value of the algebraic intersection number is equal to the geometric intersection number, implying that each pair naturally gives rise to an origami. We collect some rudimentary experimental data on the corresponding $SL(2, \\mathbb{Z})$-orbits and suggest further study and conjectures.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Origamis associated to minimally intersecting filling pairs\",\"authors\":\"Tarik Aougab, W. Menasco, M. Nieland\",\"doi\":\"10.2140/pjm.2022.317.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $S_{g}$ denote the closed orientable surface of genus $g$. In joint work with Huang, the first author constructed exponentially-many (in $g$) mapping class group orbits of pairs of simple closed curves whose complement is a single topological disk. Using different techniques, we improve on this result by constructing factorially-many (again in $g$) such orbits. These new orbits are chosen so that the absolute value of the algebraic intersection number is equal to the geometric intersection number, implying that each pair naturally gives rise to an origami. We collect some rudimentary experimental data on the corresponding $SL(2, \\\\mathbb{Z})$-orbits and suggest further study and conjectures.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2022.317.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.317.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设$S_{g}$表示亏格$g$的闭可定向曲面。在与黄的合作中,第一作者构造了补为单个拓扑盘的简单闭曲线对的指数多映射类群轨道。使用不同的技术,我们通过构建因子多个(同样是$g$)这样的轨道来改进这一结果。选择这些新的轨道是为了使代数交集的绝对值等于几何交集,这意味着每对轨道自然会产生折纸。我们收集了一些关于相应的$SL(2,\mathbb{Z})$-轨道的初步实验数据,并提出了进一步的研究和猜测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Origamis associated to minimally intersecting filling pairs
Let $S_{g}$ denote the closed orientable surface of genus $g$. In joint work with Huang, the first author constructed exponentially-many (in $g$) mapping class group orbits of pairs of simple closed curves whose complement is a single topological disk. Using different techniques, we improve on this result by constructing factorially-many (again in $g$) such orbits. These new orbits are chosen so that the absolute value of the algebraic intersection number is equal to the geometric intersection number, implying that each pair naturally gives rise to an origami. We collect some rudimentary experimental data on the corresponding $SL(2, \mathbb{Z})$-orbits and suggest further study and conjectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信