{"title":"钢制圆柱形储液罐流固耦合有限元地震分析","authors":"A. Rawat, V. Matsagar, A. K. Nagpal","doi":"10.20855/ijav.2020.25.11499","DOIUrl":null,"url":null,"abstract":"A seismic analysis of ground-supported, three-dimensional (3-D) rigid-base steel cylindrical liquid storage tank is investigated, using a coupled acoustic-structural finite element (FE) method for fluid-structure interaction (FSI). In this method, the contained liquid in the tank is modelled using acoustic elements and the cylindrical tank is modelled using shell elements. The impulsive and convective terms are estimated separately by using the appropriate boundary conditions on the free surface of the liquid. The convergence and validation studies of the proposed FE model are conducted by comparing the results reported in the literature. The parametric studies are performed for rigid and flexible tanks for the varying slenderness of the open roof tanks. The sloshing displacement and base shear time history responses are evaluated for the 3-D tanks subjected to harmonic unidirectional ground motions. Further, the results are compared with the commonly used two and three lumped-mass models of the tank. Moreover, the seismic response quantities of the tank subjected simultaneously to the bi-directional horizontal components of earthquake ground motion are also investigated using the 3-D FE model, and the response quantities are compared with the lumped-mass models. The results obtained from the 3-D FE model and lumpedmass model are in close agreement. The average percentage difference in the 3-D FE and lumped-mass models for maximum sloshing displacement prediction is 15 percent to 20 percent and that for the base shear is about 4 to 10 percent, in the case of the uni-directional harmonic ground motions. It is concluded that the sloshing displacement is not affected by the tank flexibility, but the impulsive hydrodynamic pressure and the impulsive component of the base shear increases with the tank flexibility.","PeriodicalId":49185,"journal":{"name":"International Journal of Acoustics and Vibration","volume":"25 1","pages":"27-40"},"PeriodicalIF":0.8000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Seismic Analysis of Steel Cylindrical Liquid Storage Tank Using Coupled Acoustic-Structural Finite Element Method For Fluid-Structure Interaction\",\"authors\":\"A. Rawat, V. Matsagar, A. K. Nagpal\",\"doi\":\"10.20855/ijav.2020.25.11499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A seismic analysis of ground-supported, three-dimensional (3-D) rigid-base steel cylindrical liquid storage tank is investigated, using a coupled acoustic-structural finite element (FE) method for fluid-structure interaction (FSI). In this method, the contained liquid in the tank is modelled using acoustic elements and the cylindrical tank is modelled using shell elements. The impulsive and convective terms are estimated separately by using the appropriate boundary conditions on the free surface of the liquid. The convergence and validation studies of the proposed FE model are conducted by comparing the results reported in the literature. The parametric studies are performed for rigid and flexible tanks for the varying slenderness of the open roof tanks. The sloshing displacement and base shear time history responses are evaluated for the 3-D tanks subjected to harmonic unidirectional ground motions. Further, the results are compared with the commonly used two and three lumped-mass models of the tank. Moreover, the seismic response quantities of the tank subjected simultaneously to the bi-directional horizontal components of earthquake ground motion are also investigated using the 3-D FE model, and the response quantities are compared with the lumped-mass models. The results obtained from the 3-D FE model and lumpedmass model are in close agreement. The average percentage difference in the 3-D FE and lumped-mass models for maximum sloshing displacement prediction is 15 percent to 20 percent and that for the base shear is about 4 to 10 percent, in the case of the uni-directional harmonic ground motions. It is concluded that the sloshing displacement is not affected by the tank flexibility, but the impulsive hydrodynamic pressure and the impulsive component of the base shear increases with the tank flexibility.\",\"PeriodicalId\":49185,\"journal\":{\"name\":\"International Journal of Acoustics and Vibration\",\"volume\":\"25 1\",\"pages\":\"27-40\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Acoustics and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.20855/ijav.2020.25.11499\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Acoustics and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.20855/ijav.2020.25.11499","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Seismic Analysis of Steel Cylindrical Liquid Storage Tank Using Coupled Acoustic-Structural Finite Element Method For Fluid-Structure Interaction
A seismic analysis of ground-supported, three-dimensional (3-D) rigid-base steel cylindrical liquid storage tank is investigated, using a coupled acoustic-structural finite element (FE) method for fluid-structure interaction (FSI). In this method, the contained liquid in the tank is modelled using acoustic elements and the cylindrical tank is modelled using shell elements. The impulsive and convective terms are estimated separately by using the appropriate boundary conditions on the free surface of the liquid. The convergence and validation studies of the proposed FE model are conducted by comparing the results reported in the literature. The parametric studies are performed for rigid and flexible tanks for the varying slenderness of the open roof tanks. The sloshing displacement and base shear time history responses are evaluated for the 3-D tanks subjected to harmonic unidirectional ground motions. Further, the results are compared with the commonly used two and three lumped-mass models of the tank. Moreover, the seismic response quantities of the tank subjected simultaneously to the bi-directional horizontal components of earthquake ground motion are also investigated using the 3-D FE model, and the response quantities are compared with the lumped-mass models. The results obtained from the 3-D FE model and lumpedmass model are in close agreement. The average percentage difference in the 3-D FE and lumped-mass models for maximum sloshing displacement prediction is 15 percent to 20 percent and that for the base shear is about 4 to 10 percent, in the case of the uni-directional harmonic ground motions. It is concluded that the sloshing displacement is not affected by the tank flexibility, but the impulsive hydrodynamic pressure and the impulsive component of the base shear increases with the tank flexibility.
期刊介绍:
The International Journal of Acoustics and Vibration (IJAV) is the refereed open-access journal of the International Institute of Acoustics and Vibration (IIAV). The IIAV is a non-profit international scientific society founded in 1995. The primary objective of the Institute is to advance the science of acoustics and vibration by creating an international organization that is responsive to the needs of scientists and engineers concerned with acoustics and vibration problems all around the world.
Manuscripts of articles, technical notes and letters-to-the-editor should be submitted to the Editor-in-Chief via the on-line submission system. Authors wishing to submit an article need to log in on the IJAV website first. Users logged into the website are able to submit new articles, track the status of their articles already submitted, upload revised articles, responses and/or rebuttals to reviewers, figures, biographies, photographs, copyright transfer agreements, and send comments to the editor. Each time the status of an article submitted changes, the author will also be notified automatically by email.
IIAV members (in good standing for at least six months) can publish in IJAV free of charge and their papers will be displayed on-line immediately after they have been edited and laid-out.
Non-IIAV members will be required to pay a mandatory Article Processing Charge (APC) of $200 USD if the manuscript is accepted for publication after review. The APC fee allows IIAV to make your research freely available to all readers using the Open Access model.
In addition, Non-IIAV members who pay an extra voluntary publication fee (EVPF) of $500 USD will be granted expedited publication in the IJAV Journal and their papers can be displayed on the Internet after acceptance. If the $200 USD (APC) publication fee is not honored, papers will not be published. Authors who do not pay the voluntary fixed fee of $500 USD will have their papers published but there may be a considerable delay.
The English text of the papers must be of high quality. If the text submitted is of low quality the manuscript will be more than likely rejected. For authors whose first language is not English, we recommend having their manuscripts reviewed and edited prior to submission by a native English speaker with scientific expertise. There are many commercial editing services which can provide this service at a cost to the authors.