一种新的多分叉波导结模式匹配公式

Q3 Engineering
Guilherme S. Rosa
{"title":"一种新的多分叉波导结模式匹配公式","authors":"Guilherme S. Rosa","doi":"10.1590/2179-10742021v20i31292","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we present a mode-matching-based formulation for the electromagnetic analysis of multifurcated waveguide problems, that is, the junction of a number of input waveguides with an output region of larger cross-section area. A generalized scattering matrix (GSM) representation is obtained for relating the forward and backward modal field amplitudes in each of the waveguides in terms of coupling integrals representing the conservation of the reaction of the electromagnetic fields. Numerical results for several multifurcated coaxial waveguide devices are provided to validate the formulation. Comparisons against the finite-element method demonstrate that the present approach can accurately model multifurcated waveguide problems. The method introduced here provides useful matrix formulas that allow us to model multi-port waveguide devices by reusing well-known coupling integrals of two-port problems.","PeriodicalId":53567,"journal":{"name":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Novel Mode-Matching Formulation of Multifurcated Waveguide Junctions\",\"authors\":\"Guilherme S. Rosa\",\"doi\":\"10.1590/2179-10742021v20i31292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we present a mode-matching-based formulation for the electromagnetic analysis of multifurcated waveguide problems, that is, the junction of a number of input waveguides with an output region of larger cross-section area. A generalized scattering matrix (GSM) representation is obtained for relating the forward and backward modal field amplitudes in each of the waveguides in terms of coupling integrals representing the conservation of the reaction of the electromagnetic fields. Numerical results for several multifurcated coaxial waveguide devices are provided to validate the formulation. Comparisons against the finite-element method demonstrate that the present approach can accurately model multifurcated waveguide problems. The method introduced here provides useful matrix formulas that allow us to model multi-port waveguide devices by reusing well-known coupling integrals of two-port problems.\",\"PeriodicalId\":53567,\"journal\":{\"name\":\"Journal of Microwaves, Optoelectronics and Electromagnetic Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microwaves, Optoelectronics and Electromagnetic Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/2179-10742021v20i31292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2179-10742021v20i31292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

摘要在本文中,我们提出了一种基于模式匹配的公式,用于多分叉波导问题的电磁分析,即多个输入波导与较大横截面积的输出区域的结。获得了广义散射矩阵(GSM)表示,用于根据表示电磁场反应守恒的耦合积分来关联每个波导中的前向和后向模态场振幅。给出了几种多分叉同轴波导器件的数值结果,验证了该公式的正确性。与有限元方法的比较表明,该方法可以准确地模拟多分叉波导问题。这里介绍的方法提供了有用的矩阵公式,使我们能够通过重用众所周知的两端口问题的耦合积分来对多端口波导器件进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Mode-Matching Formulation of Multifurcated Waveguide Junctions
Abstract In this paper, we present a mode-matching-based formulation for the electromagnetic analysis of multifurcated waveguide problems, that is, the junction of a number of input waveguides with an output region of larger cross-section area. A generalized scattering matrix (GSM) representation is obtained for relating the forward and backward modal field amplitudes in each of the waveguides in terms of coupling integrals representing the conservation of the reaction of the electromagnetic fields. Numerical results for several multifurcated coaxial waveguide devices are provided to validate the formulation. Comparisons against the finite-element method demonstrate that the present approach can accurately model multifurcated waveguide problems. The method introduced here provides useful matrix formulas that allow us to model multi-port waveguide devices by reusing well-known coupling integrals of two-port problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microwaves, Optoelectronics and Electromagnetic Applications
Journal of Microwaves, Optoelectronics and Electromagnetic Applications Engineering-Electrical and Electronic Engineering
CiteScore
1.70
自引率
0.00%
发文量
32
审稿时长
24 weeks
期刊介绍: The Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), published by the Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag), is a professional, refereed publication devoted to disseminating technical information in the areas of Microwaves, Optoelectronics, Photonics, and Electromagnetic Applications. Authors are invited to submit original work in one or more of the following topics. Electromagnetic Field Analysis[...] Computer Aided Design [...] Microwave Technologies [...] Photonic Technologies [...] Packaging, Integration and Test [...] Millimeter Wave Technologies [...] Electromagnetic Applications[...] Other Topics [...] Antennas [...] Articles in all aspects of microwave, optoelectronics, photonic devices and applications will be covered in the journal. All submitted papers will be peer-reviewed under supervision of the editors and the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信