迭代Plethyms的部分对称性

Pub Date : 2023-05-29 DOI:10.1007/s00026-023-00652-4
Álvaro Gutiérrez, Mercedes H. Rosas
{"title":"迭代Plethyms的部分对称性","authors":"Álvaro Gutiérrez,&nbsp;Mercedes H. Rosas","doi":"10.1007/s00026-023-00652-4","DOIUrl":null,"url":null,"abstract":"<div><p>This work highlights the existence of partial symmetries in large families of iterated plethystic coefficients. The plethystic coefficients involved come from the expansion in the Schur basis of iterated plethysms of Schur functions indexed by one-row partitions.The partial symmetries are described in terms of an involution on partitions, the flip involution, that generalizes the ubiquitous <span>\\(\\omega \\)</span> involution. Schur-positive symmetric functions possessing this partial symmetry are termed flip-symmetric. The operation of taking plethysm with <span>\\(s_\\lambda \\)</span> preserves flip-symmetry, provided that <span>\\(\\lambda \\)</span> is a partition of two. Explicit formulas for the iterated plethysms <span>\\(s_2\\circ s_b\\circ s_a\\)</span> and <span>\\(s_c\\circ s_2\\circ s_a\\)</span>, with <i>a</i>,  <i>b</i>,  and <i>c</i> <span>\\(\\ge \\)</span> 2 allow us to show that these two families of iterated plethysms are flip-symmetric. The article concludes with some observations, remarks, and open questions on the unimodality and asymptotic normality of certain flip-symmetric sequences of iterated plethystic coefficients.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Partial Symmetries of Iterated Plethysms\",\"authors\":\"Álvaro Gutiérrez,&nbsp;Mercedes H. Rosas\",\"doi\":\"10.1007/s00026-023-00652-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work highlights the existence of partial symmetries in large families of iterated plethystic coefficients. The plethystic coefficients involved come from the expansion in the Schur basis of iterated plethysms of Schur functions indexed by one-row partitions.The partial symmetries are described in terms of an involution on partitions, the flip involution, that generalizes the ubiquitous <span>\\\\(\\\\omega \\\\)</span> involution. Schur-positive symmetric functions possessing this partial symmetry are termed flip-symmetric. The operation of taking plethysm with <span>\\\\(s_\\\\lambda \\\\)</span> preserves flip-symmetry, provided that <span>\\\\(\\\\lambda \\\\)</span> is a partition of two. Explicit formulas for the iterated plethysms <span>\\\\(s_2\\\\circ s_b\\\\circ s_a\\\\)</span> and <span>\\\\(s_c\\\\circ s_2\\\\circ s_a\\\\)</span>, with <i>a</i>,  <i>b</i>,  and <i>c</i> <span>\\\\(\\\\ge \\\\)</span> 2 allow us to show that these two families of iterated plethysms are flip-symmetric. The article concludes with some observations, remarks, and open questions on the unimodality and asymptotic normality of certain flip-symmetric sequences of iterated plethystic coefficients.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-023-00652-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00652-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作强调了在迭代体积系数的大家族中存在部分对称性。所涉及的体积系数来自由一行分区索引的Schur函数的迭代体积的Schur基中的展开。部分对称性是用分区上的对合,即翻转对合来描述的,它推广了普遍存在的\(\omega\)对合。具有这种部分对称性的Schur正对称函数称为翻转对称函数。用\(s_\lambda \)取体积描记的运算保持了翻转对称性,前提是\(\lambda)是两个的分区。迭代体积描记图\(s_2\circs_b\cirs_a\)和\(s_c\cirs_2\circ s_a\\)的显式公式,其中a、b和c\(\ge\)2允许我们证明这两个迭代体积描描记图族是翻转对称的。文章最后给出了一些关于迭代体积系数的翻转对称序列的单峰性和渐近正态性的观察、评论和悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Partial Symmetries of Iterated Plethysms

分享
查看原文
Partial Symmetries of Iterated Plethysms

This work highlights the existence of partial symmetries in large families of iterated plethystic coefficients. The plethystic coefficients involved come from the expansion in the Schur basis of iterated plethysms of Schur functions indexed by one-row partitions.The partial symmetries are described in terms of an involution on partitions, the flip involution, that generalizes the ubiquitous \(\omega \) involution. Schur-positive symmetric functions possessing this partial symmetry are termed flip-symmetric. The operation of taking plethysm with \(s_\lambda \) preserves flip-symmetry, provided that \(\lambda \) is a partition of two. Explicit formulas for the iterated plethysms \(s_2\circ s_b\circ s_a\) and \(s_c\circ s_2\circ s_a\), with ab,  and c \(\ge \) 2 allow us to show that these two families of iterated plethysms are flip-symmetric. The article concludes with some observations, remarks, and open questions on the unimodality and asymptotic normality of certain flip-symmetric sequences of iterated plethystic coefficients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信