化学促进一品红分枝和茎伸长的研究

IF 1 4区 农林科学 Q3 HORTICULTURE
J. Kalinowski, I. Ahmad, J. Dole
{"title":"化学促进一品红分枝和茎伸长的研究","authors":"J. Kalinowski, I. Ahmad, J. Dole","doi":"10.21273/horttech05186-23","DOIUrl":null,"url":null,"abstract":"Growers have traditionally used mechanical pinching and other cultural practices to control height and encourage branching for full and uniform poinsettia (Euphorbia pulcherrima) plants. A total of six experiments were conducted over 5 years to evaluate the impact of chemically treating poinsettia on final height, branching, first color, visible bud formation, and anthesis. The first four experiments evaluated the potential of benzyladenine (BA) and gibberellins [GA(4+7)] to increase height of treated poinsettia. Timing of the application was assessed during Expt. 1 using a combined concentration of 3 ppm BA and 3 ppm GA(4+7) applied at 5, 7, 9, or 11 weeks after pinching; some cultivars exhibited significantly more elongated inflorescences when treatment occurred 7 or 9 weeks after pinching. The application method and frequency was assessed during Expt. 2, and treatments were applied one or three times with either drench application at a concentration of 2 ppm or foliar application at a concentration of 5 ppm or untreated controls. All plants treated with three drench applications produced taller plants on average than when only applied once or when treated with a foliar application. Expt. 3 further assessed height gain and effects on flowering during late-season production with foliar applications of BA+GA(4 + 7) applied 2 weeks after first color at a concentration of 2 ppm compared with untreated control plants. One cultivar, Mars Red, was observed to have a significant decrease in days to anthesis when treated (9 days) compared with untreated plants, but no cultivars exhibited a significant change in height resulting from treatment. Expt. 4 assessed both the application method (foliar and drench) and change in final environment when plants were either maintained in a greenhouse or relocated to a postharvest room before anthesis. Most cultivars experienced a significant height increase when treated with foliar application of BA+GA(4 + 7) regardless of the final environment, but a significant delay in days to first color, visible bud, and anthesis was prevalent, and only one cultivar exhibited a treatment benefit from drench application with no significant delay in flowering or differences caused by changing environment. Expts. 5 and 6 were conducted over 2 growing years to evaluate the benefits of chemically pinching poinsettia using dikegulac sodium at a concentration of 800 ppm applied either once or twice (1 week apart) or 1600 ppm applied once to promote branching. The tallest plants were those treated one time at a concentration of 800 ppm showing lack of dominance in the apical meristem. The greatest number of shoots occurred when plants were treated with 800 ppm twice, whereas one application of 800 or 1600 ppm often, but not always, resulted in more shoots compared with mechanically pinched plants. Interestingly, the increased number of shoots from treated plants was often more than double the number compared with mechanical pinching, but those additional shoots failed to develop, which resulted in only one or two additional inflorescences. Production time was found to be a tradeoff because most dikegulac sodium-treated plants experienced an increased number of days to first color, visible bud, and/or anthesis. These results demonstrate that height control, whether to encourage stem elongation or halt apical dominance, is cultivar-specific, and that although both the method and concentration may be determined uniformly on some cultivars, the timing of application is crucial because of potential delays in floral development.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Promotion of Branching and Stem Elongation of Poinsettia\",\"authors\":\"J. Kalinowski, I. Ahmad, J. Dole\",\"doi\":\"10.21273/horttech05186-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Growers have traditionally used mechanical pinching and other cultural practices to control height and encourage branching for full and uniform poinsettia (Euphorbia pulcherrima) plants. A total of six experiments were conducted over 5 years to evaluate the impact of chemically treating poinsettia on final height, branching, first color, visible bud formation, and anthesis. The first four experiments evaluated the potential of benzyladenine (BA) and gibberellins [GA(4+7)] to increase height of treated poinsettia. Timing of the application was assessed during Expt. 1 using a combined concentration of 3 ppm BA and 3 ppm GA(4+7) applied at 5, 7, 9, or 11 weeks after pinching; some cultivars exhibited significantly more elongated inflorescences when treatment occurred 7 or 9 weeks after pinching. The application method and frequency was assessed during Expt. 2, and treatments were applied one or three times with either drench application at a concentration of 2 ppm or foliar application at a concentration of 5 ppm or untreated controls. All plants treated with three drench applications produced taller plants on average than when only applied once or when treated with a foliar application. Expt. 3 further assessed height gain and effects on flowering during late-season production with foliar applications of BA+GA(4 + 7) applied 2 weeks after first color at a concentration of 2 ppm compared with untreated control plants. One cultivar, Mars Red, was observed to have a significant decrease in days to anthesis when treated (9 days) compared with untreated plants, but no cultivars exhibited a significant change in height resulting from treatment. Expt. 4 assessed both the application method (foliar and drench) and change in final environment when plants were either maintained in a greenhouse or relocated to a postharvest room before anthesis. Most cultivars experienced a significant height increase when treated with foliar application of BA+GA(4 + 7) regardless of the final environment, but a significant delay in days to first color, visible bud, and anthesis was prevalent, and only one cultivar exhibited a treatment benefit from drench application with no significant delay in flowering or differences caused by changing environment. Expts. 5 and 6 were conducted over 2 growing years to evaluate the benefits of chemically pinching poinsettia using dikegulac sodium at a concentration of 800 ppm applied either once or twice (1 week apart) or 1600 ppm applied once to promote branching. The tallest plants were those treated one time at a concentration of 800 ppm showing lack of dominance in the apical meristem. The greatest number of shoots occurred when plants were treated with 800 ppm twice, whereas one application of 800 or 1600 ppm often, but not always, resulted in more shoots compared with mechanically pinched plants. Interestingly, the increased number of shoots from treated plants was often more than double the number compared with mechanical pinching, but those additional shoots failed to develop, which resulted in only one or two additional inflorescences. Production time was found to be a tradeoff because most dikegulac sodium-treated plants experienced an increased number of days to first color, visible bud, and/or anthesis. These results demonstrate that height control, whether to encourage stem elongation or halt apical dominance, is cultivar-specific, and that although both the method and concentration may be determined uniformly on some cultivars, the timing of application is crucial because of potential delays in floral development.\",\"PeriodicalId\":13144,\"journal\":{\"name\":\"Horttechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horttechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.21273/horttech05186-23\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horttechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/horttech05186-23","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

种植者传统上使用机械摘心和其他栽培方法来控制高度,并鼓励对饱满均匀的一品红(一品红)植物进行分枝。在5年的时间里,共进行了6个实验,以评估化学处理一品红对最终高度、分枝、第一颜色、可见芽形成和开花的影响。前四个实验评估了苄基腺嘌呤(BA)和赤霉素[GA(4+7)]增加处理过的一品红高度的潜力。在实验1期间使用在捏夹后5、7、9或11周施用的3ppm BA和3ppm GA(4+7)的组合浓度来评估施用的时间;一些品种在摘心后7或9周处理时表现出明显更细长的花序。在试验2期间评估施用方法和频率,并施用一次或三次处理,以浓度为2ppm的淋施或浓度为5ppm的叶面施用或未处理的对照。所有经过三次淋水处理的植物平均比只施用一次或叶面处理的植物长得更高。试验3通过叶面施用BA+GA进一步评估了晚季生产期间的高度增加和对开花的影响(4 + 7) 与未处理的对照植物相比,在第一次着色后2周以2ppm的浓度施用。与未处理的植物相比,一个品种Mars Red在处理(9天)时开花天数显著减少,但没有任何品种因处理而表现出高度的显著变化。试验4评估了开花前将植物保持在温室中或转移到采后室时的施用方法(叶面和淋水)和最终环境的变化。当叶面施用BA+GA时,大多数品种的高度都显著增加(4 + 7) 无论最终环境如何,但普遍存在初色、可见芽和开花的显著延迟天数,只有一个品种表现出淋施的处理效益,而开花没有显著延迟或环境变化引起的差异。Expts。在2个生长年内进行了第5和第6项的试验,以评估使用浓度为800ppm的dikegulac钠施用一次或两次(间隔1周)或施用一次1600ppm以促进分枝的化学掐尖一品红的益处。最高的植物是那些在800ppm浓度下处理一次的植物,它们在顶端分生组织中缺乏优势。当植物用800ppm处理两次时,出现了最大数量的芽,而与机械挤压的植物相比,一次施用800ppm或1600ppm通常(但并不总是)会产生更多的芽。有趣的是,与机械摘心相比,处理过的植物的新芽数量增加了一倍多,但这些额外的新芽未能发育,导致只有一两个额外的花序。生产时间被发现是一种权衡,因为大多数dikegulac钠处理的植物经历了第一次着色、可见芽和/或开花的天数增加。这些结果表明,高度控制,无论是促进茎伸长还是停止顶端优势,都是品种特有的,尽管在某些品种上可以统一确定方法和浓度,但由于花发育的潜在延迟,施用时间至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemical Promotion of Branching and Stem Elongation of Poinsettia
Growers have traditionally used mechanical pinching and other cultural practices to control height and encourage branching for full and uniform poinsettia (Euphorbia pulcherrima) plants. A total of six experiments were conducted over 5 years to evaluate the impact of chemically treating poinsettia on final height, branching, first color, visible bud formation, and anthesis. The first four experiments evaluated the potential of benzyladenine (BA) and gibberellins [GA(4+7)] to increase height of treated poinsettia. Timing of the application was assessed during Expt. 1 using a combined concentration of 3 ppm BA and 3 ppm GA(4+7) applied at 5, 7, 9, or 11 weeks after pinching; some cultivars exhibited significantly more elongated inflorescences when treatment occurred 7 or 9 weeks after pinching. The application method and frequency was assessed during Expt. 2, and treatments were applied one or three times with either drench application at a concentration of 2 ppm or foliar application at a concentration of 5 ppm or untreated controls. All plants treated with three drench applications produced taller plants on average than when only applied once or when treated with a foliar application. Expt. 3 further assessed height gain and effects on flowering during late-season production with foliar applications of BA+GA(4 + 7) applied 2 weeks after first color at a concentration of 2 ppm compared with untreated control plants. One cultivar, Mars Red, was observed to have a significant decrease in days to anthesis when treated (9 days) compared with untreated plants, but no cultivars exhibited a significant change in height resulting from treatment. Expt. 4 assessed both the application method (foliar and drench) and change in final environment when plants were either maintained in a greenhouse or relocated to a postharvest room before anthesis. Most cultivars experienced a significant height increase when treated with foliar application of BA+GA(4 + 7) regardless of the final environment, but a significant delay in days to first color, visible bud, and anthesis was prevalent, and only one cultivar exhibited a treatment benefit from drench application with no significant delay in flowering or differences caused by changing environment. Expts. 5 and 6 were conducted over 2 growing years to evaluate the benefits of chemically pinching poinsettia using dikegulac sodium at a concentration of 800 ppm applied either once or twice (1 week apart) or 1600 ppm applied once to promote branching. The tallest plants were those treated one time at a concentration of 800 ppm showing lack of dominance in the apical meristem. The greatest number of shoots occurred when plants were treated with 800 ppm twice, whereas one application of 800 or 1600 ppm often, but not always, resulted in more shoots compared with mechanically pinched plants. Interestingly, the increased number of shoots from treated plants was often more than double the number compared with mechanical pinching, but those additional shoots failed to develop, which resulted in only one or two additional inflorescences. Production time was found to be a tradeoff because most dikegulac sodium-treated plants experienced an increased number of days to first color, visible bud, and/or anthesis. These results demonstrate that height control, whether to encourage stem elongation or halt apical dominance, is cultivar-specific, and that although both the method and concentration may be determined uniformly on some cultivars, the timing of application is crucial because of potential delays in floral development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Horttechnology
Horttechnology 农林科学-园艺
CiteScore
2.30
自引率
10.00%
发文量
67
审稿时长
3 months
期刊介绍: HortTechnology serves as the primary outreach publication of the American Society for Horticultural Science. Its mission is to provide science-based information to professional horticulturists, practitioners, and educators; promote and encourage an interchange of ideas among scientists, educators, and professionals working in horticulture; and provide an opportunity for peer review of practical horticultural information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信