单项理想的线性分辨率和拟线性

Pub Date : 2022-02-21 DOI:10.7146/math.scand.a-136634
D. Lu
{"title":"单项理想的线性分辨率和拟线性","authors":"D. Lu","doi":"10.7146/math.scand.a-136634","DOIUrl":null,"url":null,"abstract":"We introduce the notion of quasi-linearity and prove it is necessary for a monomial ideal to have a linear resolution and clarify all the quasi-linear monomial ideals generated in degree $2$. We also introduce the notion of a strongly linear monomial over a monomial ideal and prove that if $\\mathbf {u}$ is a monomial strongly linear over $I$ then $I$ has a linear resolution (respectively is quasi-linear) if and only if $I+\\mathbf {u}\\mathfrak {p}$ has a linear resolution (respectively is quasi-linear). Here $\\mathfrak {p}$ is any monomial prime ideal.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Linear resolutions and quasi-linearity of monomial ideals\",\"authors\":\"D. Lu\",\"doi\":\"10.7146/math.scand.a-136634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of quasi-linearity and prove it is necessary for a monomial ideal to have a linear resolution and clarify all the quasi-linear monomial ideals generated in degree $2$. We also introduce the notion of a strongly linear monomial over a monomial ideal and prove that if $\\\\mathbf {u}$ is a monomial strongly linear over $I$ then $I$ has a linear resolution (respectively is quasi-linear) if and only if $I+\\\\mathbf {u}\\\\mathfrak {p}$ has a linear resolution (respectively is quasi-linear). Here $\\\\mathfrak {p}$ is any monomial prime ideal.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-136634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-136634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们引入了拟线性的概念,证明了单理想具有线性分辨率是必要的,并阐明了在阶$2$中生成的所有拟线性单理想。我们还引入了单体理想上强线性单体的概念,并证明了如果$\mathbf{u}$是$I$上的单体强线性,则$I$具有线性分辨率(分别为准线性)当且仅当$I+\mathbf{u}\mathfrak{p}$具有线性分辨力(分别为拟线性)。这里$\mathfrak{p}$是任何单素数理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Linear resolutions and quasi-linearity of monomial ideals
We introduce the notion of quasi-linearity and prove it is necessary for a monomial ideal to have a linear resolution and clarify all the quasi-linear monomial ideals generated in degree $2$. We also introduce the notion of a strongly linear monomial over a monomial ideal and prove that if $\mathbf {u}$ is a monomial strongly linear over $I$ then $I$ has a linear resolution (respectively is quasi-linear) if and only if $I+\mathbf {u}\mathfrak {p}$ has a linear resolution (respectively is quasi-linear). Here $\mathfrak {p}$ is any monomial prime ideal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信