{"title":"JmjC结构域蛋白的非催化功能破坏异染色质","authors":"Kehan Bao, S. Jia","doi":"10.1177/2516865719862249","DOIUrl":null,"url":null,"abstract":"Chromatin-modifying enzymes are frequently overexpressed in cancer cells, and their enzymatic activities play important roles in changing the epigenetic landscape responsible for tumorigenesis. However, many of these proteins also execute noncatalytic functions, which are poorly understood. In fission yeast, overexpression of Epe1, a histone demethylase homolog, causes heterochromatin defects. Interestingly, in our recent work, we discovered that overexpressed Epe1 recruits SAGA, a histone acetyltransferase complex important for transcriptional regulation, to disrupt heterochromatin, independent of its demethylase activity. Our findings suggest that overexpressed chromatin-modifying enzymes can alter the epigenetic landscape through changing their proteomic environments, an area that needs to be further explored in dissecting disease etiology associated with overexpression of chromatin regulators.","PeriodicalId":41996,"journal":{"name":"Epigenetics Insights","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2516865719862249","citationCount":"1","resultStr":"{\"title\":\"Noncatalytic Function of a JmjC Domain Protein Disrupts Heterochromatin\",\"authors\":\"Kehan Bao, S. Jia\",\"doi\":\"10.1177/2516865719862249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chromatin-modifying enzymes are frequently overexpressed in cancer cells, and their enzymatic activities play important roles in changing the epigenetic landscape responsible for tumorigenesis. However, many of these proteins also execute noncatalytic functions, which are poorly understood. In fission yeast, overexpression of Epe1, a histone demethylase homolog, causes heterochromatin defects. Interestingly, in our recent work, we discovered that overexpressed Epe1 recruits SAGA, a histone acetyltransferase complex important for transcriptional regulation, to disrupt heterochromatin, independent of its demethylase activity. Our findings suggest that overexpressed chromatin-modifying enzymes can alter the epigenetic landscape through changing their proteomic environments, an area that needs to be further explored in dissecting disease etiology associated with overexpression of chromatin regulators.\",\"PeriodicalId\":41996,\"journal\":{\"name\":\"Epigenetics Insights\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2516865719862249\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2516865719862249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2516865719862249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Noncatalytic Function of a JmjC Domain Protein Disrupts Heterochromatin
Chromatin-modifying enzymes are frequently overexpressed in cancer cells, and their enzymatic activities play important roles in changing the epigenetic landscape responsible for tumorigenesis. However, many of these proteins also execute noncatalytic functions, which are poorly understood. In fission yeast, overexpression of Epe1, a histone demethylase homolog, causes heterochromatin defects. Interestingly, in our recent work, we discovered that overexpressed Epe1 recruits SAGA, a histone acetyltransferase complex important for transcriptional regulation, to disrupt heterochromatin, independent of its demethylase activity. Our findings suggest that overexpressed chromatin-modifying enzymes can alter the epigenetic landscape through changing their proteomic environments, an area that needs to be further explored in dissecting disease etiology associated with overexpression of chromatin regulators.