奇异SDE的稳定性估计及其应用

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
L. Galeati, Chengcheng Ling
{"title":"奇异SDE的稳定性估计及其应用","authors":"L. Galeati, Chengcheng Ling","doi":"10.1214/23-ejp913","DOIUrl":null,"url":null,"abstract":"We consider multidimensional SDEs with singular drift $b$ and Sobolev diffusion coefficients $\\sigma$, satisfying Krylov--R\\\"ockner type assumptions. We prove several stability estimates, comparing solutions driven by different $(b^i,\\sigma^i)$, both for It\\^o and Stratonovich SDEs, possibly depending on negative Sobolev norms of the difference $b^1-b^2$. We then discuss several applications of these results to McKean--Vlasov SDEs, criteria for strong compactness of solutions and Wong--Zakai type theorems.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stability estimates for singular SDEs and applications\",\"authors\":\"L. Galeati, Chengcheng Ling\",\"doi\":\"10.1214/23-ejp913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider multidimensional SDEs with singular drift $b$ and Sobolev diffusion coefficients $\\\\sigma$, satisfying Krylov--R\\\\\\\"ockner type assumptions. We prove several stability estimates, comparing solutions driven by different $(b^i,\\\\sigma^i)$, both for It\\\\^o and Stratonovich SDEs, possibly depending on negative Sobolev norms of the difference $b^1-b^2$. We then discuss several applications of these results to McKean--Vlasov SDEs, criteria for strong compactness of solutions and Wong--Zakai type theorems.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejp913\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejp913","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑具有奇异漂移$b$和Sobolev扩散系数$\sigma$的多维SDE,满足Krylov-R\“ockner型假设。我们证明了几个稳定性估计,比较了不同$(b^i,\ sigma^i)驱动的解$,对于It\^o和Stratonovich SDE,可能取决于差值$b^1-b^2$的负Sobolev范数。然后我们讨论了这些结果在McKean—Vlasov SDE、解的强紧性准则和Wong—Zakai型定理中的几个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability estimates for singular SDEs and applications
We consider multidimensional SDEs with singular drift $b$ and Sobolev diffusion coefficients $\sigma$, satisfying Krylov--R\"ockner type assumptions. We prove several stability estimates, comparing solutions driven by different $(b^i,\sigma^i)$, both for It\^o and Stratonovich SDEs, possibly depending on negative Sobolev norms of the difference $b^1-b^2$. We then discuss several applications of these results to McKean--Vlasov SDEs, criteria for strong compactness of solutions and Wong--Zakai type theorems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信