从越南临床文本中自动提取医学术语

IF 0.9 4区 文学 0 LANGUAGE & LINGUISTICS
Terminology Pub Date : 2022-06-09 DOI:10.1075/term.20037.vo
C. Vo, T. Cao, Ngoc Truong, T. Ngo, Dai Bui
{"title":"从越南临床文本中自动提取医学术语","authors":"C. Vo, T. Cao, Ngoc Truong, T. Ngo, Dai Bui","doi":"10.1075/term.20037.vo","DOIUrl":null,"url":null,"abstract":"\n In this paper, we propose the first method for automatic Vietnamese medical term discovery and extraction from\n clinical texts. The method combines linguistic filtering based on our defined open patterns with nested term extraction and\n statistical ranking using C-value. It does not require annotated corpora, external data resources, parameter\n settings, or term length restriction. Beside its specialty in handling Vietnamese medical terms, another novelty is that it uses\n Pointwise Mutual Information to split nested terms and the disjunctive acceptance condition to extract them. Evaluated on real\n Vietnamese electronic medical records, it achieves a precision of about 74% and recall of about 92% and is proved stably effective\n with small datasets. It outperforms the previous works in the same category of not using annotated corpora and external data\n resources. Our method and empirical evaluation analysis can lay a foundation for further research and development in Vietnamese\n medical term discovery and extraction.","PeriodicalId":44429,"journal":{"name":"Terminology","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic medical term extraction from Vietnamese clinical texts\",\"authors\":\"C. Vo, T. Cao, Ngoc Truong, T. Ngo, Dai Bui\",\"doi\":\"10.1075/term.20037.vo\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we propose the first method for automatic Vietnamese medical term discovery and extraction from\\n clinical texts. The method combines linguistic filtering based on our defined open patterns with nested term extraction and\\n statistical ranking using C-value. It does not require annotated corpora, external data resources, parameter\\n settings, or term length restriction. Beside its specialty in handling Vietnamese medical terms, another novelty is that it uses\\n Pointwise Mutual Information to split nested terms and the disjunctive acceptance condition to extract them. Evaluated on real\\n Vietnamese electronic medical records, it achieves a precision of about 74% and recall of about 92% and is proved stably effective\\n with small datasets. It outperforms the previous works in the same category of not using annotated corpora and external data\\n resources. Our method and empirical evaluation analysis can lay a foundation for further research and development in Vietnamese\\n medical term discovery and extraction.\",\"PeriodicalId\":44429,\"journal\":{\"name\":\"Terminology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Terminology\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1075/term.20037.vo\",\"RegionNum\":4,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Terminology","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1075/term.20037.vo","RegionNum":4,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了第一种从临床文本中自动发现和提取越南语医学术语的方法。该方法将基于我们定义的开放模式的语言过滤与嵌套术语提取和使用C值的统计排名相结合。它不需要注释语料库、外部数据资源、参数设置或术语长度限制。除了它在处理越南医学术语方面的特殊性外,另一个新颖之处是它使用Pointwise Mutual Information来拆分嵌套术语,并使用析取接受条件来提取它们。在真实的越南电子病历上进行评估,其准确率约为74%,召回率约为92%,并在小数据集上被证明是稳定有效的。在不使用注释语料库和外部数据资源的情况下,它优于以往同类作品。我们的方法和实证评价分析可以为越南医学术语发现和提取的进一步研究和发展奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic medical term extraction from Vietnamese clinical texts
In this paper, we propose the first method for automatic Vietnamese medical term discovery and extraction from clinical texts. The method combines linguistic filtering based on our defined open patterns with nested term extraction and statistical ranking using C-value. It does not require annotated corpora, external data resources, parameter settings, or term length restriction. Beside its specialty in handling Vietnamese medical terms, another novelty is that it uses Pointwise Mutual Information to split nested terms and the disjunctive acceptance condition to extract them. Evaluated on real Vietnamese electronic medical records, it achieves a precision of about 74% and recall of about 92% and is proved stably effective with small datasets. It outperforms the previous works in the same category of not using annotated corpora and external data resources. Our method and empirical evaluation analysis can lay a foundation for further research and development in Vietnamese medical term discovery and extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Terminology
Terminology Multiple-
CiteScore
1.60
自引率
0.00%
发文量
15
期刊介绍: Terminology is an independent journal with a cross-cultural and cross-disciplinary scope. It focusses on the discussion of (systematic) solutions not only of language problems encountered in translation, but also, for example, of (monolingual) problems of ambiguity, reference and developments in multidisciplinary communication. Particular attention will be given to new and developing subject areas such as knowledge representation and transfer, information technology tools, expert systems and terminological databases. Terminology encompasses terminology both in general (theory and practice) and in specialized fields (LSP), such as physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信