$\mathrm{GL}(2)的强重数一的精化$

IF 0.6 3区 数学 Q3 MATHEMATICS
PENG-JIE Wong
{"title":"$\\mathrm{GL}(2)的强重数一的精化$","authors":"PENG-JIE Wong","doi":"10.4310/mrl.2022.v29.n2.a11","DOIUrl":null,"url":null,"abstract":"For distinct unitary cuspidal automorphic representations π1 and π2 for GL(2) over a number field F and any α ∈ R, let Sα be the set of primes v of F for which λπ1(v) 6= eλπ2(v), where λπi(v) is the Fourier coefficient of πi at v. In this article, we show that the lower Dirichlet density of Sα is at least 1 16 . Moreover, if π1 and π2 are not twist-equivalent, we show that the lower Dirichlet densities of Sα and ∩α Sα are at least 2 13 and 1 11 , respectively. Furthermore, for non-twist-equivalent π1 and π2, if each πi corresponds to a non-CM newform of weight ki ≥ 2 and with trivial nebentypus, we obtain various upper bounds for the number of primes p ≤ x such that λπ1(p) 2 = λπ2(p) . These present refinements of the works of Murty-Pujahari, Murty-Rajan, Ramakrishnan, and Walji.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refinements of strong multiplicity one for $\\\\mathrm{GL}(2)$\",\"authors\":\"PENG-JIE Wong\",\"doi\":\"10.4310/mrl.2022.v29.n2.a11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For distinct unitary cuspidal automorphic representations π1 and π2 for GL(2) over a number field F and any α ∈ R, let Sα be the set of primes v of F for which λπ1(v) 6= eλπ2(v), where λπi(v) is the Fourier coefficient of πi at v. In this article, we show that the lower Dirichlet density of Sα is at least 1 16 . Moreover, if π1 and π2 are not twist-equivalent, we show that the lower Dirichlet densities of Sα and ∩α Sα are at least 2 13 and 1 11 , respectively. Furthermore, for non-twist-equivalent π1 and π2, if each πi corresponds to a non-CM newform of weight ki ≥ 2 and with trivial nebentypus, we obtain various upper bounds for the number of primes p ≤ x such that λπ1(p) 2 = λπ2(p) . These present refinements of the works of Murty-Pujahari, Murty-Rajan, Ramakrishnan, and Walji.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2022.v29.n2.a11\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2022.v29.n2.a11","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于数域F和任意α∈R上GL(2)的不同酉尖点自同构表示π1和π2,设Sα是F的素数v的集合,其中λπ1(v)6=eλπ2(v),其中,λπi(v)是πi在v处的傅立叶系数。此外,如果π1和π2不是扭曲等价的,我们证明了Sα和Sα的较低Dirichlet密度分别至少为2 13和1 11。此外,对于非扭曲等价π1和π2,如果每个πi对应于一个权重ki≥2且具有平凡nebentypus的非CM新形式,我们得到了素数p≤x的各种上界,使得λπ1(p)2=λπ2(p)。这些是对穆尔蒂·普贾哈里、穆尔蒂·拉詹、罗摩克里希南和瓦尔吉作品的提炼。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refinements of strong multiplicity one for $\mathrm{GL}(2)$
For distinct unitary cuspidal automorphic representations π1 and π2 for GL(2) over a number field F and any α ∈ R, let Sα be the set of primes v of F for which λπ1(v) 6= eλπ2(v), where λπi(v) is the Fourier coefficient of πi at v. In this article, we show that the lower Dirichlet density of Sα is at least 1 16 . Moreover, if π1 and π2 are not twist-equivalent, we show that the lower Dirichlet densities of Sα and ∩α Sα are at least 2 13 and 1 11 , respectively. Furthermore, for non-twist-equivalent π1 and π2, if each πi corresponds to a non-CM newform of weight ki ≥ 2 and with trivial nebentypus, we obtain various upper bounds for the number of primes p ≤ x such that λπ1(p) 2 = λπ2(p) . These present refinements of the works of Murty-Pujahari, Murty-Rajan, Ramakrishnan, and Walji.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信