{"title":"大陆造山带的古气候和地形:利用古代大气降水的初始氧同位素进行理论反演","authors":"Chun-Sheng Wei, Zi‐Fu Zhao","doi":"10.1017/S1755691023000075","DOIUrl":null,"url":null,"abstract":"ABSTRACT Ancient environments have been mostly reconstructed with exogenous records, yet the potential constraints from endogenous archives were less emphasised. It has been well known that the outer- and inner-spheres of the planetary Earth are naturally linked and/or interplayed each other among geospheres. As stable isotopes of the meteoric water are globally dependent upon precipitating environments, rocks and/or minerals hydrothermally altered by the meteoric water can thus imprint environmental information of continental settings. These valuable clues, however, have been intuitively and/or qualitatively inferred up to now. On the basis of an innovative procedure recently proposed for dealing with thermodynamic re-equilibration of oxygen isotopes between constituent minerals and water from fossil hydrothermal systems, ancient meteoric waters are theoretically inverted from the early Cretaceous post-collisional granitoid and Triassic gneissic country rocks across the Dabie orogen in central-eastern China. The initial oxygen isotopes of ancient meteoric water (i.e., $\\delta ^{18}O_W^i$ value hereafter) range from −11.01 ± 0.43 (one standard deviation, 1SD) to −7.61 ± 0.07‰ in this study, yet systematically and/or statistically deviating from modern local precipitation. These imply that either palaeoclimate could be colder than the present at least during the early Cretaceous or palaeoaltimetry has geographically varied across the Dabie orogen since the Triassic. Moreover, the lifetime of fossil hydrothermal systems is kinetically quantified to less than 1.2 million years (Myr) for the concurrent lowering of oxygen isotopes of hydrothermally altered rock-forming minerals through the surface-reaction oxygen exchange with ancient meteoric waters herein. Our results thus suggest that palaeoenvironments of the continental orogen can be scientifically and methodologically unearthed from endogenous archives and theoretical inversion of $\\delta ^{18}O_W^i$ values can be quantitatively applied beyond the Dabie orogen.","PeriodicalId":55171,"journal":{"name":"Earth and Environmental Science Transactions of the Royal Society of Edinburgh","volume":"113 1","pages":"361 - 372"},"PeriodicalIF":0.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Palaeo-climate and -topography of the continental orogen: Theoretical inversion with initial oxygen isotopes of ancient meteoric water\",\"authors\":\"Chun-Sheng Wei, Zi‐Fu Zhao\",\"doi\":\"10.1017/S1755691023000075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Ancient environments have been mostly reconstructed with exogenous records, yet the potential constraints from endogenous archives were less emphasised. It has been well known that the outer- and inner-spheres of the planetary Earth are naturally linked and/or interplayed each other among geospheres. As stable isotopes of the meteoric water are globally dependent upon precipitating environments, rocks and/or minerals hydrothermally altered by the meteoric water can thus imprint environmental information of continental settings. These valuable clues, however, have been intuitively and/or qualitatively inferred up to now. On the basis of an innovative procedure recently proposed for dealing with thermodynamic re-equilibration of oxygen isotopes between constituent minerals and water from fossil hydrothermal systems, ancient meteoric waters are theoretically inverted from the early Cretaceous post-collisional granitoid and Triassic gneissic country rocks across the Dabie orogen in central-eastern China. The initial oxygen isotopes of ancient meteoric water (i.e., $\\\\delta ^{18}O_W^i$ value hereafter) range from −11.01 ± 0.43 (one standard deviation, 1SD) to −7.61 ± 0.07‰ in this study, yet systematically and/or statistically deviating from modern local precipitation. These imply that either palaeoclimate could be colder than the present at least during the early Cretaceous or palaeoaltimetry has geographically varied across the Dabie orogen since the Triassic. Moreover, the lifetime of fossil hydrothermal systems is kinetically quantified to less than 1.2 million years (Myr) for the concurrent lowering of oxygen isotopes of hydrothermally altered rock-forming minerals through the surface-reaction oxygen exchange with ancient meteoric waters herein. Our results thus suggest that palaeoenvironments of the continental orogen can be scientifically and methodologically unearthed from endogenous archives and theoretical inversion of $\\\\delta ^{18}O_W^i$ values can be quantitatively applied beyond the Dabie orogen.\",\"PeriodicalId\":55171,\"journal\":{\"name\":\"Earth and Environmental Science Transactions of the Royal Society of Edinburgh\",\"volume\":\"113 1\",\"pages\":\"361 - 372\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Environmental Science Transactions of the Royal Society of Edinburgh\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/S1755691023000075\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Environmental Science Transactions of the Royal Society of Edinburgh","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/S1755691023000075","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Palaeo-climate and -topography of the continental orogen: Theoretical inversion with initial oxygen isotopes of ancient meteoric water
ABSTRACT Ancient environments have been mostly reconstructed with exogenous records, yet the potential constraints from endogenous archives were less emphasised. It has been well known that the outer- and inner-spheres of the planetary Earth are naturally linked and/or interplayed each other among geospheres. As stable isotopes of the meteoric water are globally dependent upon precipitating environments, rocks and/or minerals hydrothermally altered by the meteoric water can thus imprint environmental information of continental settings. These valuable clues, however, have been intuitively and/or qualitatively inferred up to now. On the basis of an innovative procedure recently proposed for dealing with thermodynamic re-equilibration of oxygen isotopes between constituent minerals and water from fossil hydrothermal systems, ancient meteoric waters are theoretically inverted from the early Cretaceous post-collisional granitoid and Triassic gneissic country rocks across the Dabie orogen in central-eastern China. The initial oxygen isotopes of ancient meteoric water (i.e., $\delta ^{18}O_W^i$ value hereafter) range from −11.01 ± 0.43 (one standard deviation, 1SD) to −7.61 ± 0.07‰ in this study, yet systematically and/or statistically deviating from modern local precipitation. These imply that either palaeoclimate could be colder than the present at least during the early Cretaceous or palaeoaltimetry has geographically varied across the Dabie orogen since the Triassic. Moreover, the lifetime of fossil hydrothermal systems is kinetically quantified to less than 1.2 million years (Myr) for the concurrent lowering of oxygen isotopes of hydrothermally altered rock-forming minerals through the surface-reaction oxygen exchange with ancient meteoric waters herein. Our results thus suggest that palaeoenvironments of the continental orogen can be scientifically and methodologically unearthed from endogenous archives and theoretical inversion of $\delta ^{18}O_W^i$ values can be quantitatively applied beyond the Dabie orogen.
期刊介绍:
Earth and Environmental Science Transactions (formerly Transactions of the Royal Society of Edinburgh: Earth Sciences) is a general earth sciences journal publishing a comprehensive selection of substantial peer-reviewed research papers, reviews and short communications of international standard across the broad spectrum of the Earth and its surface environments. The journal prides itself on the quality of its graphics and photographic reproduction. The Editors are keen to encourage interdisciplinary papers and Transactions also publishes occasional special symposia and invited volumes of specific interest.
We are currently in the process of digitising the archive of RSE Publications, and the archive of the Transactions, dating back to 1788, will be available from the back issues link on this site.