Juan Antonio Martínez Rojas, José L. Fernández-Sánchez
{"title":"将量纲分析与基于模型的系统工程相结合","authors":"Juan Antonio Martínez Rojas, José L. Fernández-Sánchez","doi":"10.1002/sys.21646","DOIUrl":null,"url":null,"abstract":"The model based systems engineering (MBSE) approach describes a system using consistent views to provide a holistic model as complete as possible. MBSE methodologies end with the physical architecture of the system, but a physical model is clearly incomplete without the study of its associated physical laws and phenomena related to the whole system or its parts. However, the computational demands could be excessive even for modest projects. Dimensional analysis (DA) is common in fluid dynamics and chemical engineering, but its application to systems engineering is still limited. We describe an engineering methodological process, which incorporates DA as a powerful tool to understand the physical constraints of the system without the burden of complex analytical or numerical calculations. A detailed example describing a microantenna is presented showing the benefits of this approach. The selected example describes a problem rarely covered in modern expositions of DA in order to show the wide benefit of these techniques. The information provided by this analysis is very useful to select the best physically realizable architectures, testing design, and conduct trade‐off studies. The complexity of modern systems and systems of systems demands new testing procedures in order to comply with increasingly demanding requirements and regulations. This can be accomplished through research in new DA methods. Finally, this article serves as a fairly comprehensive guide to the use of DA in the context of MBSE, detailing its strengths, limitations, and controversial issues.","PeriodicalId":54439,"journal":{"name":"Systems Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combining dimensional analysis with model based systems engineering\",\"authors\":\"Juan Antonio Martínez Rojas, José L. Fernández-Sánchez\",\"doi\":\"10.1002/sys.21646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The model based systems engineering (MBSE) approach describes a system using consistent views to provide a holistic model as complete as possible. MBSE methodologies end with the physical architecture of the system, but a physical model is clearly incomplete without the study of its associated physical laws and phenomena related to the whole system or its parts. However, the computational demands could be excessive even for modest projects. Dimensional analysis (DA) is common in fluid dynamics and chemical engineering, but its application to systems engineering is still limited. We describe an engineering methodological process, which incorporates DA as a powerful tool to understand the physical constraints of the system without the burden of complex analytical or numerical calculations. A detailed example describing a microantenna is presented showing the benefits of this approach. The selected example describes a problem rarely covered in modern expositions of DA in order to show the wide benefit of these techniques. The information provided by this analysis is very useful to select the best physically realizable architectures, testing design, and conduct trade‐off studies. The complexity of modern systems and systems of systems demands new testing procedures in order to comply with increasingly demanding requirements and regulations. This can be accomplished through research in new DA methods. Finally, this article serves as a fairly comprehensive guide to the use of DA in the context of MBSE, detailing its strengths, limitations, and controversial issues.\",\"PeriodicalId\":54439,\"journal\":{\"name\":\"Systems Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/sys.21646\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/sys.21646","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Combining dimensional analysis with model based systems engineering
The model based systems engineering (MBSE) approach describes a system using consistent views to provide a holistic model as complete as possible. MBSE methodologies end with the physical architecture of the system, but a physical model is clearly incomplete without the study of its associated physical laws and phenomena related to the whole system or its parts. However, the computational demands could be excessive even for modest projects. Dimensional analysis (DA) is common in fluid dynamics and chemical engineering, but its application to systems engineering is still limited. We describe an engineering methodological process, which incorporates DA as a powerful tool to understand the physical constraints of the system without the burden of complex analytical or numerical calculations. A detailed example describing a microantenna is presented showing the benefits of this approach. The selected example describes a problem rarely covered in modern expositions of DA in order to show the wide benefit of these techniques. The information provided by this analysis is very useful to select the best physically realizable architectures, testing design, and conduct trade‐off studies. The complexity of modern systems and systems of systems demands new testing procedures in order to comply with increasingly demanding requirements and regulations. This can be accomplished through research in new DA methods. Finally, this article serves as a fairly comprehensive guide to the use of DA in the context of MBSE, detailing its strengths, limitations, and controversial issues.
期刊介绍:
Systems Engineering is a discipline whose responsibility it is to create and operate technologically enabled systems that satisfy stakeholder needs throughout their life cycle. Systems engineers reduce ambiguity by clearly defining stakeholder needs and customer requirements, they focus creativity by developing a system’s architecture and design and they manage the system’s complexity over time. Considerations taken into account by systems engineers include, among others, quality, cost and schedule, risk and opportunity under uncertainty, manufacturing and realization, performance and safety during operations, training and support, as well as disposal and recycling at the end of life. The journal welcomes original submissions in the field of Systems Engineering as defined above, but also encourages contributions that take an even broader perspective including the design and operation of systems-of-systems, the application of Systems Engineering to enterprises and complex socio-technical systems, the identification, selection and development of systems engineers as well as the evolution of systems and systems-of-systems over their entire lifecycle.
Systems Engineering integrates all the disciplines and specialty groups into a coordinated team effort forming a structured development process that proceeds from concept to realization to operation. Increasingly important topics in Systems Engineering include the role of executable languages and models of systems, the concurrent use of physical and virtual prototyping, as well as the deployment of agile processes. Systems Engineering considers both the business and the technical needs of all stakeholders with the goal of providing a quality product that meets the user needs. Systems Engineering may be applied not only to products and services in the private sector but also to public infrastructures and socio-technical systems whose precise boundaries are often challenging to define.