将量纲分析与基于模型的系统工程相结合

IF 1.6 3区 工程技术 Q4 ENGINEERING, INDUSTRIAL
Juan Antonio Martínez Rojas, José L. Fernández-Sánchez
{"title":"将量纲分析与基于模型的系统工程相结合","authors":"Juan Antonio Martínez Rojas, José L. Fernández-Sánchez","doi":"10.1002/sys.21646","DOIUrl":null,"url":null,"abstract":"The model based systems engineering (MBSE) approach describes a system using consistent views to provide a holistic model as complete as possible. MBSE methodologies end with the physical architecture of the system, but a physical model is clearly incomplete without the study of its associated physical laws and phenomena related to the whole system or its parts. However, the computational demands could be excessive even for modest projects. Dimensional analysis (DA) is common in fluid dynamics and chemical engineering, but its application to systems engineering is still limited. We describe an engineering methodological process, which incorporates DA as a powerful tool to understand the physical constraints of the system without the burden of complex analytical or numerical calculations. A detailed example describing a microantenna is presented showing the benefits of this approach. The selected example describes a problem rarely covered in modern expositions of DA in order to show the wide benefit of these techniques. The information provided by this analysis is very useful to select the best physically realizable architectures, testing design, and conduct trade‐off studies. The complexity of modern systems and systems of systems demands new testing procedures in order to comply with increasingly demanding requirements and regulations. This can be accomplished through research in new DA methods. Finally, this article serves as a fairly comprehensive guide to the use of DA in the context of MBSE, detailing its strengths, limitations, and controversial issues.","PeriodicalId":54439,"journal":{"name":"Systems Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combining dimensional analysis with model based systems engineering\",\"authors\":\"Juan Antonio Martínez Rojas, José L. Fernández-Sánchez\",\"doi\":\"10.1002/sys.21646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The model based systems engineering (MBSE) approach describes a system using consistent views to provide a holistic model as complete as possible. MBSE methodologies end with the physical architecture of the system, but a physical model is clearly incomplete without the study of its associated physical laws and phenomena related to the whole system or its parts. However, the computational demands could be excessive even for modest projects. Dimensional analysis (DA) is common in fluid dynamics and chemical engineering, but its application to systems engineering is still limited. We describe an engineering methodological process, which incorporates DA as a powerful tool to understand the physical constraints of the system without the burden of complex analytical or numerical calculations. A detailed example describing a microantenna is presented showing the benefits of this approach. The selected example describes a problem rarely covered in modern expositions of DA in order to show the wide benefit of these techniques. The information provided by this analysis is very useful to select the best physically realizable architectures, testing design, and conduct trade‐off studies. The complexity of modern systems and systems of systems demands new testing procedures in order to comply with increasingly demanding requirements and regulations. This can be accomplished through research in new DA methods. Finally, this article serves as a fairly comprehensive guide to the use of DA in the context of MBSE, detailing its strengths, limitations, and controversial issues.\",\"PeriodicalId\":54439,\"journal\":{\"name\":\"Systems Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/sys.21646\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/sys.21646","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1

摘要

基于模型的系统工程(MBSE)方法描述了使用一致视图来提供尽可能完整的整体模型的系统。MBSE方法论以系统的物理架构结束,但如果不研究与整个系统或其部分相关的物理定律和现象,物理模型显然是不完整的。然而,即使对于规模不大的项目,计算需求也可能过高。尺寸分析(DA)在流体动力学和化学工程中很常见,但它在系统工程中的应用仍然有限。我们描述了一个工程方法过程,该过程将DA作为一个强大的工具来理解系统的物理约束,而无需复杂的分析或数值计算。给出了一个描述微天线的详细例子,展示了这种方法的优点。所选的例子描述了DA现代论述中很少涉及的一个问题,以展示这些技术的广泛优势。该分析提供的信息对于选择最佳物理可实现架构、测试设计和进行权衡研究非常有用。现代系统和系统体系的复杂性要求新的测试程序,以符合日益苛刻的要求和法规。这可以通过研究新的DA方法来实现。最后,本文为在MBSE背景下使用DA提供了一个相当全面的指南,详细介绍了其优势、局限性和有争议的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining dimensional analysis with model based systems engineering
The model based systems engineering (MBSE) approach describes a system using consistent views to provide a holistic model as complete as possible. MBSE methodologies end with the physical architecture of the system, but a physical model is clearly incomplete without the study of its associated physical laws and phenomena related to the whole system or its parts. However, the computational demands could be excessive even for modest projects. Dimensional analysis (DA) is common in fluid dynamics and chemical engineering, but its application to systems engineering is still limited. We describe an engineering methodological process, which incorporates DA as a powerful tool to understand the physical constraints of the system without the burden of complex analytical or numerical calculations. A detailed example describing a microantenna is presented showing the benefits of this approach. The selected example describes a problem rarely covered in modern expositions of DA in order to show the wide benefit of these techniques. The information provided by this analysis is very useful to select the best physically realizable architectures, testing design, and conduct trade‐off studies. The complexity of modern systems and systems of systems demands new testing procedures in order to comply with increasingly demanding requirements and regulations. This can be accomplished through research in new DA methods. Finally, this article serves as a fairly comprehensive guide to the use of DA in the context of MBSE, detailing its strengths, limitations, and controversial issues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems Engineering
Systems Engineering 工程技术-工程:工业
CiteScore
5.10
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: Systems Engineering is a discipline whose responsibility it is to create and operate technologically enabled systems that satisfy stakeholder needs throughout their life cycle. Systems engineers reduce ambiguity by clearly defining stakeholder needs and customer requirements, they focus creativity by developing a system’s architecture and design and they manage the system’s complexity over time. Considerations taken into account by systems engineers include, among others, quality, cost and schedule, risk and opportunity under uncertainty, manufacturing and realization, performance and safety during operations, training and support, as well as disposal and recycling at the end of life. The journal welcomes original submissions in the field of Systems Engineering as defined above, but also encourages contributions that take an even broader perspective including the design and operation of systems-of-systems, the application of Systems Engineering to enterprises and complex socio-technical systems, the identification, selection and development of systems engineers as well as the evolution of systems and systems-of-systems over their entire lifecycle. Systems Engineering integrates all the disciplines and specialty groups into a coordinated team effort forming a structured development process that proceeds from concept to realization to operation. Increasingly important topics in Systems Engineering include the role of executable languages and models of systems, the concurrent use of physical and virtual prototyping, as well as the deployment of agile processes. Systems Engineering considers both the business and the technical needs of all stakeholders with the goal of providing a quality product that meets the user needs. Systems Engineering may be applied not only to products and services in the private sector but also to public infrastructures and socio-technical systems whose precise boundaries are often challenging to define.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信