使用三维升级的球脊算法进行三维弯曲管道的逆向设计

IF 1.1 4区 工程技术 Q3 ENGINEERING, MULTIDISCIPLINARY
A. Kariminia, M. Nili-Ahmadabadi, K. Kim
{"title":"使用三维升级的球脊算法进行三维弯曲管道的逆向设计","authors":"A. Kariminia, M. Nili-Ahmadabadi, K. Kim","doi":"10.1080/17415977.2021.1894143","DOIUrl":null,"url":null,"abstract":"ABSTRACT Achieving a unique solution for the 3D inverse design of a curved duct is a challenging problem in aerodynamic design. The centre-line curvature, and cross-sections’ area and shape of a 3D curved duct influence the wall pressure distribution. All the previous developments on the ball-spine method were limited to 2D and quasi-3D ducts, in which only the upper and lower lines of the symmetry plane were modified based on the target pressure distribution. In the present work, the ball-spine method was three-dimensionally developed for the design of curved ducts while considering the effects of cross-sectional shape and area. To validate the method, all the nodes of a 3D duct wall were iteratively corrected under the modified ball-spine method to reach the target geometry. The effects of the ball movement directions (spines) and the grid generation scheme in achieving the unique solution in inverse design were evaluated. The results showed that the new method converges to a unique solution only if the streamline-based grids are applied for the flow numerical solution, and the horizontal spines are considered as the directions for the displacement of the nodes. Finally, the wall pressure distribution of a high-deflected 3D S-shaped diffuser was three-dimensionally modified to reduce the separation, secondary flow, and flow distortion.","PeriodicalId":54926,"journal":{"name":"Inverse Problems in Science and Engineering","volume":"29 1","pages":"1946 - 1980"},"PeriodicalIF":1.1000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17415977.2021.1894143","citationCount":"1","resultStr":"{\"title\":\"Inverse design of 3D curved ducts using a 3D-upgraded ball-spine algorithm\",\"authors\":\"A. Kariminia, M. Nili-Ahmadabadi, K. Kim\",\"doi\":\"10.1080/17415977.2021.1894143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Achieving a unique solution for the 3D inverse design of a curved duct is a challenging problem in aerodynamic design. The centre-line curvature, and cross-sections’ area and shape of a 3D curved duct influence the wall pressure distribution. All the previous developments on the ball-spine method were limited to 2D and quasi-3D ducts, in which only the upper and lower lines of the symmetry plane were modified based on the target pressure distribution. In the present work, the ball-spine method was three-dimensionally developed for the design of curved ducts while considering the effects of cross-sectional shape and area. To validate the method, all the nodes of a 3D duct wall were iteratively corrected under the modified ball-spine method to reach the target geometry. The effects of the ball movement directions (spines) and the grid generation scheme in achieving the unique solution in inverse design were evaluated. The results showed that the new method converges to a unique solution only if the streamline-based grids are applied for the flow numerical solution, and the horizontal spines are considered as the directions for the displacement of the nodes. Finally, the wall pressure distribution of a high-deflected 3D S-shaped diffuser was three-dimensionally modified to reduce the separation, secondary flow, and flow distortion.\",\"PeriodicalId\":54926,\"journal\":{\"name\":\"Inverse Problems in Science and Engineering\",\"volume\":\"29 1\",\"pages\":\"1946 - 1980\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17415977.2021.1894143\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems in Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17415977.2021.1894143\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems in Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17415977.2021.1894143","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要:在空气动力学设计中,为弯曲管道的三维逆向设计找到一个独特的解决方案是一个具有挑战性的问题。三维弯曲风管的中心线曲率、横截面面积和形状会影响壁面压力分布。球脊法之前的所有发展都局限于2D和准3D管道,其中只有对称平面的上下线根据目标压力分布进行了修改。在本工作中,在考虑横截面形状和面积影响的情况下,为弯曲管道的设计三维开发了球脊法。为了验证该方法,在改进的球脊方法下迭代校正三维风管壁的所有节点,以达到目标几何体。评估了球的运动方向(脊)和网格生成方案在反设计中实现唯一解的效果。结果表明,只有将基于流线的网格应用于流动数值解,并且将水平脊视为节点位移的方向,新方法才能收敛到唯一的解。最后,对高偏转三维S形扩压器的壁压分布进行了三维修正,以减少分离、二次流和流动畸变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse design of 3D curved ducts using a 3D-upgraded ball-spine algorithm
ABSTRACT Achieving a unique solution for the 3D inverse design of a curved duct is a challenging problem in aerodynamic design. The centre-line curvature, and cross-sections’ area and shape of a 3D curved duct influence the wall pressure distribution. All the previous developments on the ball-spine method were limited to 2D and quasi-3D ducts, in which only the upper and lower lines of the symmetry plane were modified based on the target pressure distribution. In the present work, the ball-spine method was three-dimensionally developed for the design of curved ducts while considering the effects of cross-sectional shape and area. To validate the method, all the nodes of a 3D duct wall were iteratively corrected under the modified ball-spine method to reach the target geometry. The effects of the ball movement directions (spines) and the grid generation scheme in achieving the unique solution in inverse design were evaluated. The results showed that the new method converges to a unique solution only if the streamline-based grids are applied for the flow numerical solution, and the horizontal spines are considered as the directions for the displacement of the nodes. Finally, the wall pressure distribution of a high-deflected 3D S-shaped diffuser was three-dimensionally modified to reduce the separation, secondary flow, and flow distortion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems in Science and Engineering
Inverse Problems in Science and Engineering 工程技术-工程:综合
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: Inverse Problems in Science and Engineering provides an international forum for the discussion of conceptual ideas and methods for the practical solution of applied inverse problems. The Journal aims to address the needs of practising engineers, mathematicians and researchers and to serve as a focal point for the quick communication of ideas. Papers must provide several non-trivial examples of practical applications. Multidisciplinary applied papers are particularly welcome. Topics include: -Shape design: determination of shape, size and location of domains (shape identification or optimization in acoustics, aerodynamics, electromagnets, etc; detection of voids and cracks). -Material properties: determination of physical properties of media. -Boundary values/initial values: identification of the proper boundary conditions and/or initial conditions (tomographic problems involving X-rays, ultrasonics, optics, thermal sources etc; determination of thermal, stress/strain, electromagnetic, fluid flow etc. boundary conditions on inaccessible boundaries; determination of initial chemical composition, etc.). -Forces and sources: determination of the unknown external forces or inputs acting on a domain (structural dynamic modification and reconstruction) and internal concentrated and distributed sources/sinks (sources of heat, noise, electromagnetic radiation, etc.). -Governing equations: inference of analytic forms of partial and/or integral equations governing the variation of measured field quantities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信