基于感知压缩和LDPC的SDR OFDM信道估计

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY
Juan Paúl Inga Ortega, Anthony Yanza Verdugo, Christian Pucha Cabrera
{"title":"基于感知压缩和LDPC的SDR OFDM信道估计","authors":"Juan Paúl Inga Ortega, Anthony Yanza Verdugo, Christian Pucha Cabrera","doi":"10.17163/ings.n23.2020.07","DOIUrl":null,"url":null,"abstract":"This work proposes the application of a channel estimator based on Compressive Sensing (CS) over a system that uses Orthogonal Frequency Division Multiplexing (OFDM) using Software Defined Radio (SDR) devices. The application of the CS theory is given through the use of sparse reconstruction algorithms such as Orthogonal Matching Pursuit (OMP) and Compressive Sampling Matching Pursuit (CoSaMP) in order to take advantage of the sparse nature of the pilot subcarriers used in OFDM, optimizing the bandwidth of system. In addition, to improve the performance of these algorithms, the sparse parity checking matrix concept is used, which is implemented in the deployment of low density parity check codes (LDPC) to obtain a sensing matrix that improves the isometric restriction property (RIP) belonging to the CS paradigm. The document shows the model implemented in the SDR equipment and analyze the bit error rate and the number of pilot symbols used.","PeriodicalId":53899,"journal":{"name":"Ingenius-Revista de Ciencia y Tecnologia","volume":"1 1","pages":"74-85"},"PeriodicalIF":0.4000,"publicationDate":"2019-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimador de canal basado en sensado compresivo y LDPC para OFDM usando SDR\",\"authors\":\"Juan Paúl Inga Ortega, Anthony Yanza Verdugo, Christian Pucha Cabrera\",\"doi\":\"10.17163/ings.n23.2020.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes the application of a channel estimator based on Compressive Sensing (CS) over a system that uses Orthogonal Frequency Division Multiplexing (OFDM) using Software Defined Radio (SDR) devices. The application of the CS theory is given through the use of sparse reconstruction algorithms such as Orthogonal Matching Pursuit (OMP) and Compressive Sampling Matching Pursuit (CoSaMP) in order to take advantage of the sparse nature of the pilot subcarriers used in OFDM, optimizing the bandwidth of system. In addition, to improve the performance of these algorithms, the sparse parity checking matrix concept is used, which is implemented in the deployment of low density parity check codes (LDPC) to obtain a sensing matrix that improves the isometric restriction property (RIP) belonging to the CS paradigm. The document shows the model implemented in the SDR equipment and analyze the bit error rate and the number of pilot symbols used.\",\"PeriodicalId\":53899,\"journal\":{\"name\":\"Ingenius-Revista de Ciencia y Tecnologia\",\"volume\":\"1 1\",\"pages\":\"74-85\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ingenius-Revista de Ciencia y Tecnologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17163/ings.n23.2020.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenius-Revista de Ciencia y Tecnologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17163/ings.n23.2020.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了在使用软件定义无线电(SDR)设备的正交频分复用(OFDM)系统上应用基于压缩感知(CS)的信道估计器。为了利用OFDM中导频子载波的稀疏性,优化系统带宽,通过使用稀疏重建算法,如正交匹配追踪(OMP)和压缩采样匹配追踪(CoSaMP),给出了CS理论的应用。此外,为了提高这些算法的性能,使用了稀疏奇偶校验矩阵的概念,该概念在低密度奇偶校验码(LDPC)的部署中实现,以获得改进属于CS范式的等距限制特性(RIP)的感测矩阵。该文件显示了在SDR设备中实现的模型,并分析了误码率和使用的导频符号数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimador de canal basado en sensado compresivo y LDPC para OFDM usando SDR
This work proposes the application of a channel estimator based on Compressive Sensing (CS) over a system that uses Orthogonal Frequency Division Multiplexing (OFDM) using Software Defined Radio (SDR) devices. The application of the CS theory is given through the use of sparse reconstruction algorithms such as Orthogonal Matching Pursuit (OMP) and Compressive Sampling Matching Pursuit (CoSaMP) in order to take advantage of the sparse nature of the pilot subcarriers used in OFDM, optimizing the bandwidth of system. In addition, to improve the performance of these algorithms, the sparse parity checking matrix concept is used, which is implemented in the deployment of low density parity check codes (LDPC) to obtain a sensing matrix that improves the isometric restriction property (RIP) belonging to the CS paradigm. The document shows the model implemented in the SDR equipment and analyze the bit error rate and the number of pilot symbols used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ingenius-Revista de Ciencia y Tecnologia
Ingenius-Revista de Ciencia y Tecnologia ENGINEERING, MULTIDISCIPLINARY-
CiteScore
0.90
自引率
0.00%
发文量
11
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信