肿瘤激情工作的影像极点的分类基于网络注射器(利用肿瘤激情治疗方案的研究)

S. Heranurweni, Budiani Destyningtias, A. Nugroho
{"title":"肿瘤激情工作的影像极点的分类基于网络注射器(利用肿瘤激情治疗方案的研究)","authors":"S. Heranurweni, Budiani Destyningtias, A. Nugroho","doi":"10.26623/ELEKTRIKA.V10I2.1169","DOIUrl":null,"url":null,"abstract":" Nowadays medical science has developed rapidly, diagnostic and treatment techniques have provided life expectancy for patients. One way of examining brain tumor sufferers is radiological examination that needs to be done, including MRI with contrast. MRI brain images are useful for seeing tumors in the initial steps of diagnosis and are very good for classification, erosions / destruction lesions of the skull. Smoothing image processing, segmentation with otsu method and feature extraction are carried out to facilitate the training and testing process. This study, will apply texture analysis with the parameters contrast, correlation, energy, homogenity to distinguish the texture of brain tumor images and normal so as to produce a standard gold value based on existing texture characteristics. Training and testing of texture features using backpropagation method of artificial neural networks with variations in learning rate values so that it is expected to obtain a classification of the image conditions of patients with brain tumors. The data used are 29 brain images that produce classification accuracy of 96.55%.Keywords :  MRI images, brain tumors, textur, backprogation ","PeriodicalId":31998,"journal":{"name":"Elektrika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"KLASIFIKASI POLA IMAGE PADA PASIEN TUMOR OTAK BERBASIS JARINGAN SYARAF TIRUAN ( STUDI KASUS PENANGANAN KURATIF PASIEN TUMOR OTAK )\",\"authors\":\"S. Heranurweni, Budiani Destyningtias, A. Nugroho\",\"doi\":\"10.26623/ELEKTRIKA.V10I2.1169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" Nowadays medical science has developed rapidly, diagnostic and treatment techniques have provided life expectancy for patients. One way of examining brain tumor sufferers is radiological examination that needs to be done, including MRI with contrast. MRI brain images are useful for seeing tumors in the initial steps of diagnosis and are very good for classification, erosions / destruction lesions of the skull. Smoothing image processing, segmentation with otsu method and feature extraction are carried out to facilitate the training and testing process. This study, will apply texture analysis with the parameters contrast, correlation, energy, homogenity to distinguish the texture of brain tumor images and normal so as to produce a standard gold value based on existing texture characteristics. Training and testing of texture features using backpropagation method of artificial neural networks with variations in learning rate values so that it is expected to obtain a classification of the image conditions of patients with brain tumors. The data used are 29 brain images that produce classification accuracy of 96.55%.Keywords :  MRI images, brain tumors, textur, backprogation \",\"PeriodicalId\":31998,\"journal\":{\"name\":\"Elektrika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektrika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26623/ELEKTRIKA.V10I2.1169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26623/ELEKTRIKA.V10I2.1169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如今,医学科学发展迅速,诊断和治疗技术为患者提供了预期寿命。检查脑瘤患者的一种方法是需要进行放射学检查,包括核磁共振造影。MRI大脑图像有助于在诊断的最初步骤中观察肿瘤,并且非常有利于颅骨的分类、侵蚀/破坏性病变。对图像进行平滑处理、otsu方法分割和特征提取,以便于训练和测试过程。本研究将应用纹理分析,结合对比度、相关性、能量、均匀性等参数,区分脑肿瘤图像的纹理和正常图像,从而在现有纹理特征的基础上产生标准的金值。使用学习率值变化的人工神经网络的反向传播方法训练和测试纹理特征,从而有望获得脑肿瘤患者图像条件的分类。使用的数据是29张大脑图像,分类准确率为96.55%。关键词:MRI图像、脑肿瘤、纹理、反向探测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KLASIFIKASI POLA IMAGE PADA PASIEN TUMOR OTAK BERBASIS JARINGAN SYARAF TIRUAN ( STUDI KASUS PENANGANAN KURATIF PASIEN TUMOR OTAK )
 Nowadays medical science has developed rapidly, diagnostic and treatment techniques have provided life expectancy for patients. One way of examining brain tumor sufferers is radiological examination that needs to be done, including MRI with contrast. MRI brain images are useful for seeing tumors in the initial steps of diagnosis and are very good for classification, erosions / destruction lesions of the skull. Smoothing image processing, segmentation with otsu method and feature extraction are carried out to facilitate the training and testing process. This study, will apply texture analysis with the parameters contrast, correlation, energy, homogenity to distinguish the texture of brain tumor images and normal so as to produce a standard gold value based on existing texture characteristics. Training and testing of texture features using backpropagation method of artificial neural networks with variations in learning rate values so that it is expected to obtain a classification of the image conditions of patients with brain tumors. The data used are 29 brain images that produce classification accuracy of 96.55%.Keywords :  MRI images, brain tumors, textur, backprogation 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
12
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信