{"title":"当前设计实践中的自适应建筑围护结构模拟:对从业者的采访结果,了解他们对方法、工具和解决方案的理解,以及对未来工具开发的影响","authors":"E. Borkowski, D. Rovas, R. Raslan","doi":"10.1080/17508975.2021.1902257","DOIUrl":null,"url":null,"abstract":"ABSTRACT Adaptive building envelopes can dynamically adapt to environmental changes to improve thermal building performance. To predict the performance of design proposals with adaptive building envelopes, Building Performance Simulation (BPS) tools can be employed. However, one shortcoming of existing tools is their limited extensibility, which implies that accurately predicting adaptive building envelope performance remains a challenge and requires ad hoc approaches. This challenge has made practitioners reticent in considering adaptive building envelopes, which in turn has led to a slow uptake of them in the built environment. This study seeks to advance the understanding of the limitations of adaptive building envelope simulation in current design practice and to suggest implications for future tool developments. To this aim, the study adopts a user-centred perspective through interviews with experts in the field. Findings suggest that current BPS tools hinder the reliable prediction of adaptive building envelope performance, as accurately representing the level of detail of the building envelope is challenging. The subsequent workarounds applied are either time- and cost-intensive or do not consider the dynamic building envelope components. More flexible modelling approaches that allow for rapid prototyping and easy integration are required to enable designers to take full advantage of adaptive building envelopes.","PeriodicalId":45828,"journal":{"name":"Intelligent Buildings International","volume":"14 1","pages":"172 - 189"},"PeriodicalIF":2.1000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17508975.2021.1902257","citationCount":"2","resultStr":"{\"title\":\"Adaptive building envelope simulation in current design practice: findings from interviews with practitioners about their understanding of methods, tools and workarounds and implications for future tool developments\",\"authors\":\"E. Borkowski, D. Rovas, R. Raslan\",\"doi\":\"10.1080/17508975.2021.1902257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Adaptive building envelopes can dynamically adapt to environmental changes to improve thermal building performance. To predict the performance of design proposals with adaptive building envelopes, Building Performance Simulation (BPS) tools can be employed. However, one shortcoming of existing tools is their limited extensibility, which implies that accurately predicting adaptive building envelope performance remains a challenge and requires ad hoc approaches. This challenge has made practitioners reticent in considering adaptive building envelopes, which in turn has led to a slow uptake of them in the built environment. This study seeks to advance the understanding of the limitations of adaptive building envelope simulation in current design practice and to suggest implications for future tool developments. To this aim, the study adopts a user-centred perspective through interviews with experts in the field. Findings suggest that current BPS tools hinder the reliable prediction of adaptive building envelope performance, as accurately representing the level of detail of the building envelope is challenging. The subsequent workarounds applied are either time- and cost-intensive or do not consider the dynamic building envelope components. More flexible modelling approaches that allow for rapid prototyping and easy integration are required to enable designers to take full advantage of adaptive building envelopes.\",\"PeriodicalId\":45828,\"journal\":{\"name\":\"Intelligent Buildings International\",\"volume\":\"14 1\",\"pages\":\"172 - 189\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17508975.2021.1902257\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Buildings International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17508975.2021.1902257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Buildings International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17508975.2021.1902257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Adaptive building envelope simulation in current design practice: findings from interviews with practitioners about their understanding of methods, tools and workarounds and implications for future tool developments
ABSTRACT Adaptive building envelopes can dynamically adapt to environmental changes to improve thermal building performance. To predict the performance of design proposals with adaptive building envelopes, Building Performance Simulation (BPS) tools can be employed. However, one shortcoming of existing tools is their limited extensibility, which implies that accurately predicting adaptive building envelope performance remains a challenge and requires ad hoc approaches. This challenge has made practitioners reticent in considering adaptive building envelopes, which in turn has led to a slow uptake of them in the built environment. This study seeks to advance the understanding of the limitations of adaptive building envelope simulation in current design practice and to suggest implications for future tool developments. To this aim, the study adopts a user-centred perspective through interviews with experts in the field. Findings suggest that current BPS tools hinder the reliable prediction of adaptive building envelope performance, as accurately representing the level of detail of the building envelope is challenging. The subsequent workarounds applied are either time- and cost-intensive or do not consider the dynamic building envelope components. More flexible modelling approaches that allow for rapid prototyping and easy integration are required to enable designers to take full advantage of adaptive building envelopes.