有色噪声驱动的FitzHugh–Nagumo方程在无界薄域上的极限行为

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Lin Shi, K. Lu, Xiaohu Wang
{"title":"有色噪声驱动的FitzHugh–Nagumo方程在无界薄域上的极限行为","authors":"Lin Shi, K. Lu, Xiaohu Wang","doi":"10.1142/s0219493722400093","DOIUrl":null,"url":null,"abstract":"We investigate the limiting behavior of dynamics of non-autonomous stochastic FitzHugh–Nagumo equations driven by a nonlinear multiplicative colored noise on unbounded thin domains. We first establish the existence and uniqueness of random attractors for the equations on the thin domains and their limit equations. Then, we establish the upper semicontinuity of these attractors when the thin domains collapse into a lower-dimensional unbounded domain.","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limiting behavior of FitzHugh–Nagumo equations driven by colored noise on unbounded thin domains\",\"authors\":\"Lin Shi, K. Lu, Xiaohu Wang\",\"doi\":\"10.1142/s0219493722400093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the limiting behavior of dynamics of non-autonomous stochastic FitzHugh–Nagumo equations driven by a nonlinear multiplicative colored noise on unbounded thin domains. We first establish the existence and uniqueness of random attractors for the equations on the thin domains and their limit equations. Then, we establish the upper semicontinuity of these attractors when the thin domains collapse into a lower-dimensional unbounded domain.\",\"PeriodicalId\":51170,\"journal\":{\"name\":\"Stochastics and Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219493722400093\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219493722400093","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了无界薄域上由非线性乘性色噪声驱动的非自治随机FitzHugh–Nagumo方程的动力学极限行为。我们首先建立了薄域上方程及其极限方程的随机吸引子的存在性和唯一性。然后,当薄域坍塌为低维无界域时,我们建立了这些吸引子的上半连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limiting behavior of FitzHugh–Nagumo equations driven by colored noise on unbounded thin domains
We investigate the limiting behavior of dynamics of non-autonomous stochastic FitzHugh–Nagumo equations driven by a nonlinear multiplicative colored noise on unbounded thin domains. We first establish the existence and uniqueness of random attractors for the equations on the thin domains and their limit equations. Then, we establish the upper semicontinuity of these attractors when the thin domains collapse into a lower-dimensional unbounded domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Dynamics
Stochastics and Dynamics 数学-统计学与概率论
CiteScore
1.70
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view. Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信