Fox-Hatcher循环和一个三阶Vassiliev不变量

IF 0.7 3区 数学 Q2 MATHEMATICS
Saki Kanou, K. Sakai
{"title":"Fox-Hatcher循环和一个三阶Vassiliev不变量","authors":"Saki Kanou, K. Sakai","doi":"10.2140/pjm.2023.323.281","DOIUrl":null,"url":null,"abstract":"We show that the integration of a 1-cocycle I(X) of the space of long knots in R^3 over the Fox-Hatcher 1-cycles gives rise to a Vassiliev invariant of order exactly three. This result can be seen as a continuation of the previous work of the second named author, proving that the integration of I(X) over the Gramain 1-cycles is the Casson invariant, the unique nontrivial Vassiliev invariant of order two (up to scalar multiplications). The result in the present paper is also analogous to part of Mortier's result. Our result differs from, but is motivated by, Mortier's one in that the 1-cocycle I(X) is given by the configuration space integrals associated with graphs while Mortier's cocycle is obtained in a combinatorial way.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Fox–Hatcher cycle and a Vassiliev invariant\\nof order three\",\"authors\":\"Saki Kanou, K. Sakai\",\"doi\":\"10.2140/pjm.2023.323.281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the integration of a 1-cocycle I(X) of the space of long knots in R^3 over the Fox-Hatcher 1-cycles gives rise to a Vassiliev invariant of order exactly three. This result can be seen as a continuation of the previous work of the second named author, proving that the integration of I(X) over the Gramain 1-cycles is the Casson invariant, the unique nontrivial Vassiliev invariant of order two (up to scalar multiplications). The result in the present paper is also analogous to part of Mortier's result. Our result differs from, but is motivated by, Mortier's one in that the 1-cocycle I(X) is given by the configuration space integrals associated with graphs while Mortier's cocycle is obtained in a combinatorial way.\",\"PeriodicalId\":54651,\"journal\":{\"name\":\"Pacific Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.323.281\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.323.281","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了R^3中长结空间的1-并环I(X)在Fox-Hatcher-1-环上的积分产生了一个恰好为三阶的Vassiliev不变量。这一结果可以看作是第二位作者先前工作的延续,证明了I(X)在Gramain 1-环上的积分是Casson不变量,即二阶(直到标量乘法)的唯一非平凡Vassiliev不变量。本文的结果也类似于Mortier的部分结果。我们的结果不同于Mortier的结果,但受到Mortier结果的启发,因为1-共循环I(X)是由与图相关的配置空间积分给出的,而Mortier共循环是以组合的方式获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Fox–Hatcher cycle and a Vassiliev invariant of order three
We show that the integration of a 1-cocycle I(X) of the space of long knots in R^3 over the Fox-Hatcher 1-cycles gives rise to a Vassiliev invariant of order exactly three. This result can be seen as a continuation of the previous work of the second named author, proving that the integration of I(X) over the Gramain 1-cycles is the Casson invariant, the unique nontrivial Vassiliev invariant of order two (up to scalar multiplications). The result in the present paper is also analogous to part of Mortier's result. Our result differs from, but is motivated by, Mortier's one in that the 1-cocycle I(X) is given by the configuration space integrals associated with graphs while Mortier's cocycle is obtained in a combinatorial way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信