一个全局紧性结果及其在含耦合扰动项的Hardy-Sobolev临界椭圆系统中的应用

IF 3.2 1区 数学 Q1 MATHEMATICS
Lu Shun Wang, T. Yang, Xiao Long Yang
{"title":"一个全局紧性结果及其在含耦合扰动项的Hardy-Sobolev临界椭圆系统中的应用","authors":"Lu Shun Wang, T. Yang, Xiao Long Yang","doi":"10.1515/anona-2022-0276","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study a Hardy-Sobolev critical elliptic system involving coupled perturbation terms: (0.1) − Δ u + V 1 ( x ) u = η 1 η 1 + η 2 ∣ u ∣ η 1 − 2 u ∣ v ∣ η 2 ∣ x ′ ∣ + α α + β Q ( x ) ∣ u ∣ α − 2 u ∣ v ∣ β , − Δ v + V 2 ( x ) v = η 2 η 1 + η 2 ∣ v ∣ η 2 − 2 v ∣ u ∣ η 1 ∣ x ′ ∣ + β α + β Q ( x ) ∣ v ∣ β − 2 v ∣ u ∣ α , \\left\\{\\begin{array}{c}-\\Delta u+{V}_{1}\\left(x)u=\\frac{{\\eta }_{1}}{{\\eta }_{1}+{\\eta }_{2}}\\frac{{| u| }^{{\\eta }_{1}-2}u{| v| }^{{\\eta }_{2}}}{| x^{\\prime} | }+\\frac{\\alpha }{\\alpha +\\beta }Q\\left(x)| u{| }^{\\alpha -2}u| v{| }^{\\beta },\\\\ -\\Delta v+{V}_{2}\\left(x)v=\\frac{{\\eta }_{2}}{{\\eta }_{1}+{\\eta }_{2}}\\frac{{| v| }^{{\\eta }_{2}-2}v{| u| }^{{\\eta }_{1}}}{| x^{\\prime} | }+\\frac{\\beta }{\\alpha +\\beta }Q\\left(x){| v| }^{\\beta -2}v{| u| }^{\\alpha },\\end{array}\\right. where n ≥ 3 n\\ge 3 , 2 ≤ m < n 2\\le m\\lt n , x ≔ ( x ′ , x ″ ) ∈ R m × R n − m x:= \\left(x^{\\prime} ,{x}^{^{\\prime\\prime} })\\in {{\\mathbb{R}}}^{m}\\times {{\\mathbb{R}}}^{n-m} , η 1 , η 2 > 1 {\\eta }_{1},{\\eta }_{2}\\gt 1 , and η 1 + η 2 = 2 ( n − 1 ) n − 2 {\\eta }_{1}+{\\eta }_{2}=\\frac{2\\left(n-1)}{n-2} , α , β > 1 \\alpha ,\\beta \\gt 1 and α + β < 2 n n − 2 \\alpha +\\beta \\lt \\frac{2n}{n-2} , and V 1 ( x ) , V 2 ( x ) , Q ( x ) ∈ C ( R n ) {V}_{1}\\left(x),{V}_{2}\\left(x),Q\\left(x)\\in C\\left({{\\mathbb{R}}}^{n}) . Observing that (0.1) is doubly coupled, we first develop two efficient tools (i.e., a refined Sobolev inequality and a variant of the “Vanishing” lemma). On the previous tools, we will establish a global compactness result (i.e., a complete description for the Palais-Smale sequences of the corresponding energy functional) and some existence result for (0.1) via variational method. Our strategy turns out to be very concise because we avoid the use of Levy concentration functions and truncation techniques.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A global compactness result with applications to a Hardy-Sobolev critical elliptic system involving coupled perturbation terms\",\"authors\":\"Lu Shun Wang, T. Yang, Xiao Long Yang\",\"doi\":\"10.1515/anona-2022-0276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study a Hardy-Sobolev critical elliptic system involving coupled perturbation terms: (0.1) − Δ u + V 1 ( x ) u = η 1 η 1 + η 2 ∣ u ∣ η 1 − 2 u ∣ v ∣ η 2 ∣ x ′ ∣ + α α + β Q ( x ) ∣ u ∣ α − 2 u ∣ v ∣ β , − Δ v + V 2 ( x ) v = η 2 η 1 + η 2 ∣ v ∣ η 2 − 2 v ∣ u ∣ η 1 ∣ x ′ ∣ + β α + β Q ( x ) ∣ v ∣ β − 2 v ∣ u ∣ α , \\\\left\\\\{\\\\begin{array}{c}-\\\\Delta u+{V}_{1}\\\\left(x)u=\\\\frac{{\\\\eta }_{1}}{{\\\\eta }_{1}+{\\\\eta }_{2}}\\\\frac{{| u| }^{{\\\\eta }_{1}-2}u{| v| }^{{\\\\eta }_{2}}}{| x^{\\\\prime} | }+\\\\frac{\\\\alpha }{\\\\alpha +\\\\beta }Q\\\\left(x)| u{| }^{\\\\alpha -2}u| v{| }^{\\\\beta },\\\\\\\\ -\\\\Delta v+{V}_{2}\\\\left(x)v=\\\\frac{{\\\\eta }_{2}}{{\\\\eta }_{1}+{\\\\eta }_{2}}\\\\frac{{| v| }^{{\\\\eta }_{2}-2}v{| u| }^{{\\\\eta }_{1}}}{| x^{\\\\prime} | }+\\\\frac{\\\\beta }{\\\\alpha +\\\\beta }Q\\\\left(x){| v| }^{\\\\beta -2}v{| u| }^{\\\\alpha },\\\\end{array}\\\\right. where n ≥ 3 n\\\\ge 3 , 2 ≤ m < n 2\\\\le m\\\\lt n , x ≔ ( x ′ , x ″ ) ∈ R m × R n − m x:= \\\\left(x^{\\\\prime} ,{x}^{^{\\\\prime\\\\prime} })\\\\in {{\\\\mathbb{R}}}^{m}\\\\times {{\\\\mathbb{R}}}^{n-m} , η 1 , η 2 > 1 {\\\\eta }_{1},{\\\\eta }_{2}\\\\gt 1 , and η 1 + η 2 = 2 ( n − 1 ) n − 2 {\\\\eta }_{1}+{\\\\eta }_{2}=\\\\frac{2\\\\left(n-1)}{n-2} , α , β > 1 \\\\alpha ,\\\\beta \\\\gt 1 and α + β < 2 n n − 2 \\\\alpha +\\\\beta \\\\lt \\\\frac{2n}{n-2} , and V 1 ( x ) , V 2 ( x ) , Q ( x ) ∈ C ( R n ) {V}_{1}\\\\left(x),{V}_{2}\\\\left(x),Q\\\\left(x)\\\\in C\\\\left({{\\\\mathbb{R}}}^{n}) . Observing that (0.1) is doubly coupled, we first develop two efficient tools (i.e., a refined Sobolev inequality and a variant of the “Vanishing” lemma). On the previous tools, we will establish a global compactness result (i.e., a complete description for the Palais-Smale sequences of the corresponding energy functional) and some existence result for (0.1) via variational method. Our strategy turns out to be very concise because we avoid the use of Levy concentration functions and truncation techniques.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0276\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0276","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了一个包含耦合扰动项的Hardy-Sobolev临界椭圆系统:(0.1)−Δu+V1,−Δv+V2(x)v=η2η1+η2ÜvÜη2−2 vÜuÜη1Üx′Ü+βα+βQ{c}-\三角洲u+{V}_{1} \left(x)u=\frac{\eta}_{1}}_{1}-2}u{|v|}^{\eta}_{2}}{|x^{\prime}|}+\frac{\alpha}+{V}_{2} \left(x)v=\frac{\eta}_{2}}_{2}-2}v{|u|}^{{\eta}_{1}}}{|x^{\prime}|}+\frac{\beta}{\alpha+\beta{Q\left(x)。其中n≥3 n\ge 3,2≤m1{\eta}_{1},{\eta}_{2}\gt 1,η1+η2=2(n−1)n−2{1}+{2}=\frac{2\left(n-1)}{n-2},α,β>1\alpha,\β1和α+β<2 n−2\α+\β\lt\frac{2n}{n-2},以及V1(x),V2(x)、Q(x)∈C(Rn){V}_{1} \left(x),{V}_{2} \left(x),Q\left(x)\在C\left中({\mathbb{R}}{^{n})。观察到(0.1)是双耦合的,我们首先开发了两个有效的工具(即,一个精化的Sobolev不等式和一个“消失”引理的变体)。在前面的工具上,我们将通过变分方法建立一个全局紧性结果(即对相应能量泛函的Palais-Smale序列的完整描述)和(0.1)的一些存在性结果。我们的策略非常简洁,因为我们避免使用Levy集中函数和截断技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A global compactness result with applications to a Hardy-Sobolev critical elliptic system involving coupled perturbation terms
Abstract In this article, we study a Hardy-Sobolev critical elliptic system involving coupled perturbation terms: (0.1) − Δ u + V 1 ( x ) u = η 1 η 1 + η 2 ∣ u ∣ η 1 − 2 u ∣ v ∣ η 2 ∣ x ′ ∣ + α α + β Q ( x ) ∣ u ∣ α − 2 u ∣ v ∣ β , − Δ v + V 2 ( x ) v = η 2 η 1 + η 2 ∣ v ∣ η 2 − 2 v ∣ u ∣ η 1 ∣ x ′ ∣ + β α + β Q ( x ) ∣ v ∣ β − 2 v ∣ u ∣ α , \left\{\begin{array}{c}-\Delta u+{V}_{1}\left(x)u=\frac{{\eta }_{1}}{{\eta }_{1}+{\eta }_{2}}\frac{{| u| }^{{\eta }_{1}-2}u{| v| }^{{\eta }_{2}}}{| x^{\prime} | }+\frac{\alpha }{\alpha +\beta }Q\left(x)| u{| }^{\alpha -2}u| v{| }^{\beta },\\ -\Delta v+{V}_{2}\left(x)v=\frac{{\eta }_{2}}{{\eta }_{1}+{\eta }_{2}}\frac{{| v| }^{{\eta }_{2}-2}v{| u| }^{{\eta }_{1}}}{| x^{\prime} | }+\frac{\beta }{\alpha +\beta }Q\left(x){| v| }^{\beta -2}v{| u| }^{\alpha },\end{array}\right. where n ≥ 3 n\ge 3 , 2 ≤ m < n 2\le m\lt n , x ≔ ( x ′ , x ″ ) ∈ R m × R n − m x:= \left(x^{\prime} ,{x}^{^{\prime\prime} })\in {{\mathbb{R}}}^{m}\times {{\mathbb{R}}}^{n-m} , η 1 , η 2 > 1 {\eta }_{1},{\eta }_{2}\gt 1 , and η 1 + η 2 = 2 ( n − 1 ) n − 2 {\eta }_{1}+{\eta }_{2}=\frac{2\left(n-1)}{n-2} , α , β > 1 \alpha ,\beta \gt 1 and α + β < 2 n n − 2 \alpha +\beta \lt \frac{2n}{n-2} , and V 1 ( x ) , V 2 ( x ) , Q ( x ) ∈ C ( R n ) {V}_{1}\left(x),{V}_{2}\left(x),Q\left(x)\in C\left({{\mathbb{R}}}^{n}) . Observing that (0.1) is doubly coupled, we first develop two efficient tools (i.e., a refined Sobolev inequality and a variant of the “Vanishing” lemma). On the previous tools, we will establish a global compactness result (i.e., a complete description for the Palais-Smale sequences of the corresponding energy functional) and some existence result for (0.1) via variational method. Our strategy turns out to be very concise because we avoid the use of Levy concentration functions and truncation techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信