使用Stata进行结构方程建模

Meghan K Cain
{"title":"使用Stata进行结构方程建模","authors":"Meghan K Cain","doi":"10.35566/jbds/v1n2/p7","DOIUrl":null,"url":null,"abstract":"In this tutorial, you will learn how to fit structural equation models (SEM) using Stata software. SEMs can be fit in Stata using the sem command for standard linear SEMs, the gsem command for generalized linear SEMs, or by drawing their path diagrams in the SEM Builder. After a brief introduction to Stata, the sem command will be demonstrated through a confirmatory factor analysis model, mediation model, group analysis, and a growth curve model, and the gsem command will be demonstrated through a random-slope model and a logistic ordinal regression. Materials and datasets are provided online, allowing anyone with Stata to follow along.","PeriodicalId":93575,"journal":{"name":"Journal of behavioral data science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Structural Equation Modeling using Stata\",\"authors\":\"Meghan K Cain\",\"doi\":\"10.35566/jbds/v1n2/p7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this tutorial, you will learn how to fit structural equation models (SEM) using Stata software. SEMs can be fit in Stata using the sem command for standard linear SEMs, the gsem command for generalized linear SEMs, or by drawing their path diagrams in the SEM Builder. After a brief introduction to Stata, the sem command will be demonstrated through a confirmatory factor analysis model, mediation model, group analysis, and a growth curve model, and the gsem command will be demonstrated through a random-slope model and a logistic ordinal regression. Materials and datasets are provided online, allowing anyone with Stata to follow along.\",\"PeriodicalId\":93575,\"journal\":{\"name\":\"Journal of behavioral data science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of behavioral data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35566/jbds/v1n2/p7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of behavioral data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35566/jbds/v1n2/p7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本教程中,您将学习如何使用Stata软件拟合结构方程模型(SEM)。sem可以在Stata中使用标准线性sem的sem命令、广义线性sem的gsem命令,或者通过在sem生成器中绘制其路径图来拟合。在简要介绍Stata后,将通过验证性因素分析模型、中介模型、群体分析和增长曲线模型来演示sem命令,并通过随机斜率模型和逻辑有序回归来演示gsem命令。材料和数据集在线提供,任何有Stata的人都可以跟随。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Equation Modeling using Stata
In this tutorial, you will learn how to fit structural equation models (SEM) using Stata software. SEMs can be fit in Stata using the sem command for standard linear SEMs, the gsem command for generalized linear SEMs, or by drawing their path diagrams in the SEM Builder. After a brief introduction to Stata, the sem command will be demonstrated through a confirmatory factor analysis model, mediation model, group analysis, and a growth curve model, and the gsem command will be demonstrated through a random-slope model and a logistic ordinal regression. Materials and datasets are provided online, allowing anyone with Stata to follow along.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信