{"title":"Hilbert空间中正算子积分变换的二阶导数Lipschitz型不等式","authors":"S. S. Dragomir","doi":"10.17398/2605-5686.37.2.261","DOIUrl":null,"url":null,"abstract":"For a continuous and positive function w (λ), λ > 0 and µ a positive measure on (0, ∞) we consider the following integral transform \nD (w, µ) (T ) := ∫0∞w (λ) (λ + T ) −1 dµ (λ) , \nwhere the integral is assumed to exist for T a positive operator on a complex Hilbert space H. We show among others that, if A ≥ m 1 > 0, B ≥ m 2 > 0, then \n||D (w, µ) (B) − D (w, µ) (A) − D (D (w, µ)) (A) (B − A)|| \n≤|B − A|2×[D(w,µ)(m2)−D(w,µ)(m1)−(m2- m1)D’(w,µ)(m1)]/(m2−m1)2 if m1≠m2, \n≤ D’’(w, µ)(m)/2 if m1=m2=m, \nwhere D (D (w, µ)) is the Fréchet derivative of D (w, µ) as a function of operator and D’’(w, µ) is the second derivative of D (w, µ) as a real function. \nWe also prove the norm integral inequalities for power r ∈ (0, 1] and A, B ≥ m > 0, \n||∫01((1−t)A+tB)r−1dt−((A+B)/2)r−1|| ≤ (1−r) (2−r) mr−3||B−A||2/24 \nand \n||((Ar−1+Br−1 )/2) − ∫01((1−t) A+tB)r−1dt|| ≤ (1−r) (2−r) mr−3||B − A||2/12. \n ","PeriodicalId":33668,"journal":{"name":"Extracta Mathematicae","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Second derivative Lipschitz type inequalities for an integral transform of positive operators in Hilbert spaces\",\"authors\":\"S. S. Dragomir\",\"doi\":\"10.17398/2605-5686.37.2.261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a continuous and positive function w (λ), λ > 0 and µ a positive measure on (0, ∞) we consider the following integral transform \\nD (w, µ) (T ) := ∫0∞w (λ) (λ + T ) −1 dµ (λ) , \\nwhere the integral is assumed to exist for T a positive operator on a complex Hilbert space H. We show among others that, if A ≥ m 1 > 0, B ≥ m 2 > 0, then \\n||D (w, µ) (B) − D (w, µ) (A) − D (D (w, µ)) (A) (B − A)|| \\n≤|B − A|2×[D(w,µ)(m2)−D(w,µ)(m1)−(m2- m1)D’(w,µ)(m1)]/(m2−m1)2 if m1≠m2, \\n≤ D’’(w, µ)(m)/2 if m1=m2=m, \\nwhere D (D (w, µ)) is the Fréchet derivative of D (w, µ) as a function of operator and D’’(w, µ) is the second derivative of D (w, µ) as a real function. \\nWe also prove the norm integral inequalities for power r ∈ (0, 1] and A, B ≥ m > 0, \\n||∫01((1−t)A+tB)r−1dt−((A+B)/2)r−1|| ≤ (1−r) (2−r) mr−3||B−A||2/24 \\nand \\n||((Ar−1+Br−1 )/2) − ∫01((1−t) A+tB)r−1dt|| ≤ (1−r) (2−r) mr−3||B − A||2/12. \\n \",\"PeriodicalId\":33668,\"journal\":{\"name\":\"Extracta Mathematicae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extracta Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17398/2605-5686.37.2.261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracta Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17398/2605-5686.37.2.261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Second derivative Lipschitz type inequalities for an integral transform of positive operators in Hilbert spaces
For a continuous and positive function w (λ), λ > 0 and µ a positive measure on (0, ∞) we consider the following integral transform
D (w, µ) (T ) := ∫0∞w (λ) (λ + T ) −1 dµ (λ) ,
where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. We show among others that, if A ≥ m 1 > 0, B ≥ m 2 > 0, then
||D (w, µ) (B) − D (w, µ) (A) − D (D (w, µ)) (A) (B − A)||
≤|B − A|2×[D(w,µ)(m2)−D(w,µ)(m1)−(m2- m1)D’(w,µ)(m1)]/(m2−m1)2 if m1≠m2,
≤ D’’(w, µ)(m)/2 if m1=m2=m,
where D (D (w, µ)) is the Fréchet derivative of D (w, µ) as a function of operator and D’’(w, µ) is the second derivative of D (w, µ) as a real function.
We also prove the norm integral inequalities for power r ∈ (0, 1] and A, B ≥ m > 0,
||∫01((1−t)A+tB)r−1dt−((A+B)/2)r−1|| ≤ (1−r) (2−r) mr−3||B−A||2/24
and
||((Ar−1+Br−1 )/2) − ∫01((1−t) A+tB)r−1dt|| ≤ (1−r) (2−r) mr−3||B − A||2/12.