一种新的分数阶2I2SR谣言传播模型的动态分析与最优控制

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Maolin Ye, Jiarong Li, Haijun Jiang
{"title":"一种新的分数阶2I2SR谣言传播模型的动态分析与最优控制","authors":"Maolin Ye, Jiarong Li, Haijun Jiang","doi":"10.15388/namc.2023.28.32599","DOIUrl":null,"url":null,"abstract":"In this paper, a novel fractional-order 2I2SR rumor spreading model is investigated. Firstly, the boundedness and uniqueness of solutions are proved. Then the next-generation matrix method is used to calculate the threshold. Furthermore, the stability of rumor-free/spreading equilibrium is discussed based on fractional-order Routh–Hurwitz stability criterion, Lyapunov function method, and invariance principle. Next, the necessary conditions for fractional optimal control are obtained. Finally, some numerical simulations are given to verify the results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic analysis and optimal control of a novel fractional-order 2I2SR rumor spreading model\",\"authors\":\"Maolin Ye, Jiarong Li, Haijun Jiang\",\"doi\":\"10.15388/namc.2023.28.32599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel fractional-order 2I2SR rumor spreading model is investigated. Firstly, the boundedness and uniqueness of solutions are proved. Then the next-generation matrix method is used to calculate the threshold. Furthermore, the stability of rumor-free/spreading equilibrium is discussed based on fractional-order Routh–Hurwitz stability criterion, Lyapunov function method, and invariance principle. Next, the necessary conditions for fractional optimal control are obtained. Finally, some numerical simulations are given to verify the results.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2023.28.32599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2023.28.32599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一种新的分数阶2I2SR谣言传播模型。首先,证明了解的有界性和唯一性。然后使用下一代矩阵方法来计算阈值。此外,基于分数阶Routh–Hurwitz稳定性准则、Lyapunov函数方法和不变性原理,讨论了无谣言/传播平衡的稳定性。其次,得到了分数最优控制的必要条件。最后,通过数值模拟对结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic analysis and optimal control of a novel fractional-order 2I2SR rumor spreading model
In this paper, a novel fractional-order 2I2SR rumor spreading model is investigated. Firstly, the boundedness and uniqueness of solutions are proved. Then the next-generation matrix method is used to calculate the threshold. Furthermore, the stability of rumor-free/spreading equilibrium is discussed based on fractional-order Routh–Hurwitz stability criterion, Lyapunov function method, and invariance principle. Next, the necessary conditions for fractional optimal control are obtained. Finally, some numerical simulations are given to verify the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信