{"title":"逆心电建模的时空正则化","authors":"B. Yao, Hui Yang","doi":"10.1080/24725579.2020.1823531","DOIUrl":null,"url":null,"abstract":"Abstract Advanced sensing such as the wearable sensor network provides an unprecedented opportunity to capture a wealth of information pertinent to space-time electrical activity of the heart, and facilitate the inverse electrocardiographic (ECG) modeling with the readily available data of body surface potential mapping. However, it is often challenging to derive heart-surface potentials from body-surface measurements, which is called the “inverse ECG problem.” Traditional regression is not concerned about spatiotemporal dynamic variables in complex geometries, and tends to be limited in the ability to handle high-dimensional spatiotemporal data for solving the inverse ECG problem. This paper presents a comparison study of regularization methods in the performance to achieve robust solutions of the inverse ECG problem. We first introduce the forward and inverse ECG problems. Second, we propose two spatiotemporal regularization (STRE) models to increase the robustness of inverse ECG modeling. Finally, case studies are conducted on the two-sphere geometry, as well as a real-world torso-heart geometry to evaluate the performance of different regularization methods. Experimental results show that STRE models effectively tackle the ill-conditioned inverse ECG problem and yield 56.3% and 67.3% performance improvement compared to the traditional Tikhonov regularization in the two-sphere and the torso-heart geometries, respectively. The spatiotemporal regularization methodology is shown to have strong potential to achieve robust solutions for high-dimensional predictive modeling in the inverse ECG problem.","PeriodicalId":37744,"journal":{"name":"IISE Transactions on Healthcare Systems Engineering","volume":"11 1","pages":"11 - 23"},"PeriodicalIF":1.5000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24725579.2020.1823531","citationCount":"9","resultStr":"{\"title\":\"Spatiotemporal regularization for inverse ECG modeling\",\"authors\":\"B. Yao, Hui Yang\",\"doi\":\"10.1080/24725579.2020.1823531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Advanced sensing such as the wearable sensor network provides an unprecedented opportunity to capture a wealth of information pertinent to space-time electrical activity of the heart, and facilitate the inverse electrocardiographic (ECG) modeling with the readily available data of body surface potential mapping. However, it is often challenging to derive heart-surface potentials from body-surface measurements, which is called the “inverse ECG problem.” Traditional regression is not concerned about spatiotemporal dynamic variables in complex geometries, and tends to be limited in the ability to handle high-dimensional spatiotemporal data for solving the inverse ECG problem. This paper presents a comparison study of regularization methods in the performance to achieve robust solutions of the inverse ECG problem. We first introduce the forward and inverse ECG problems. Second, we propose two spatiotemporal regularization (STRE) models to increase the robustness of inverse ECG modeling. Finally, case studies are conducted on the two-sphere geometry, as well as a real-world torso-heart geometry to evaluate the performance of different regularization methods. Experimental results show that STRE models effectively tackle the ill-conditioned inverse ECG problem and yield 56.3% and 67.3% performance improvement compared to the traditional Tikhonov regularization in the two-sphere and the torso-heart geometries, respectively. The spatiotemporal regularization methodology is shown to have strong potential to achieve robust solutions for high-dimensional predictive modeling in the inverse ECG problem.\",\"PeriodicalId\":37744,\"journal\":{\"name\":\"IISE Transactions on Healthcare Systems Engineering\",\"volume\":\"11 1\",\"pages\":\"11 - 23\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24725579.2020.1823531\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IISE Transactions on Healthcare Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24725579.2020.1823531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE Transactions on Healthcare Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24725579.2020.1823531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Spatiotemporal regularization for inverse ECG modeling
Abstract Advanced sensing such as the wearable sensor network provides an unprecedented opportunity to capture a wealth of information pertinent to space-time electrical activity of the heart, and facilitate the inverse electrocardiographic (ECG) modeling with the readily available data of body surface potential mapping. However, it is often challenging to derive heart-surface potentials from body-surface measurements, which is called the “inverse ECG problem.” Traditional regression is not concerned about spatiotemporal dynamic variables in complex geometries, and tends to be limited in the ability to handle high-dimensional spatiotemporal data for solving the inverse ECG problem. This paper presents a comparison study of regularization methods in the performance to achieve robust solutions of the inverse ECG problem. We first introduce the forward and inverse ECG problems. Second, we propose two spatiotemporal regularization (STRE) models to increase the robustness of inverse ECG modeling. Finally, case studies are conducted on the two-sphere geometry, as well as a real-world torso-heart geometry to evaluate the performance of different regularization methods. Experimental results show that STRE models effectively tackle the ill-conditioned inverse ECG problem and yield 56.3% and 67.3% performance improvement compared to the traditional Tikhonov regularization in the two-sphere and the torso-heart geometries, respectively. The spatiotemporal regularization methodology is shown to have strong potential to achieve robust solutions for high-dimensional predictive modeling in the inverse ECG problem.
期刊介绍:
IISE Transactions on Healthcare Systems Engineering aims to foster the healthcare systems community by publishing high quality papers that have a strong methodological focus and direct applicability to healthcare systems. Published quarterly, the journal supports research that explores: · Healthcare Operations Management · Medical Decision Making · Socio-Technical Systems Analysis related to healthcare · Quality Engineering · Healthcare Informatics · Healthcare Policy We are looking forward to accepting submissions that document the development and use of industrial and systems engineering tools and techniques including: · Healthcare operations research · Healthcare statistics · Healthcare information systems · Healthcare work measurement · Human factors/ergonomics applied to healthcare systems Research that explores the integration of these tools and techniques with those from other engineering and medical disciplines are also featured. We encourage the submission of clinical notes, or practice notes, to show the impact of contributions that will be published. We also encourage authors to collect an impact statement from their clinical partners to show the impact of research in the clinical practices.