{"title":"射流冲击液膜的实验与分析研究","authors":"Chuansheng Liu, Chenglong Tang, Qingchen Ma, Zuohua Huang, Peng Zhang, Fengyun Zhang","doi":"10.2514/1.t6656","DOIUrl":null,"url":null,"abstract":"Liquid film cooling by jet–wall impingement on the combustor wall is commonly used in small rocket engines. The heat transfer mechanism inside the liquid film is closely related to the film flow. Therefore, we establish a comprehensive analytical model with reasonable assumptions for the liquid film flow by inclined jet–wall impingement, and we validate it through a series of experiments. It is found that the predicted liquid film dimensions agree well with the experimental results. As the impingement angle increases from 30 to 60 deg, the shape of the liquid film turns from an oval to a circle. With the increase of the impingement velocity from 7.8 to [Formula: see text], the width, length, and area of the liquid film increase. The wall roughness [Formula: see text] ranges from 6.3 to [Formula: see text], which shows negligible effects on the liquid film dimensions. As the surface tension increases from 36.03 to 67.13 mN/m and the viscosity increases from 1 to [Formula: see text], the dimensions of the liquid film decrease. The effect of viscosity is more significant than surface tension within the scope of this experiment. Finally, an empirical correlation for the three investigated film dimensional parameters is proposed.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental and Analytical Study on the Liquid Film by Jet–Wall Impingement\",\"authors\":\"Chuansheng Liu, Chenglong Tang, Qingchen Ma, Zuohua Huang, Peng Zhang, Fengyun Zhang\",\"doi\":\"10.2514/1.t6656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid film cooling by jet–wall impingement on the combustor wall is commonly used in small rocket engines. The heat transfer mechanism inside the liquid film is closely related to the film flow. Therefore, we establish a comprehensive analytical model with reasonable assumptions for the liquid film flow by inclined jet–wall impingement, and we validate it through a series of experiments. It is found that the predicted liquid film dimensions agree well with the experimental results. As the impingement angle increases from 30 to 60 deg, the shape of the liquid film turns from an oval to a circle. With the increase of the impingement velocity from 7.8 to [Formula: see text], the width, length, and area of the liquid film increase. The wall roughness [Formula: see text] ranges from 6.3 to [Formula: see text], which shows negligible effects on the liquid film dimensions. As the surface tension increases from 36.03 to 67.13 mN/m and the viscosity increases from 1 to [Formula: see text], the dimensions of the liquid film decrease. The effect of viscosity is more significant than surface tension within the scope of this experiment. Finally, an empirical correlation for the three investigated film dimensional parameters is proposed.\",\"PeriodicalId\":17482,\"journal\":{\"name\":\"Journal of Thermophysics and Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermophysics and Heat Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.t6656\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6656","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental and Analytical Study on the Liquid Film by Jet–Wall Impingement
Liquid film cooling by jet–wall impingement on the combustor wall is commonly used in small rocket engines. The heat transfer mechanism inside the liquid film is closely related to the film flow. Therefore, we establish a comprehensive analytical model with reasonable assumptions for the liquid film flow by inclined jet–wall impingement, and we validate it through a series of experiments. It is found that the predicted liquid film dimensions agree well with the experimental results. As the impingement angle increases from 30 to 60 deg, the shape of the liquid film turns from an oval to a circle. With the increase of the impingement velocity from 7.8 to [Formula: see text], the width, length, and area of the liquid film increase. The wall roughness [Formula: see text] ranges from 6.3 to [Formula: see text], which shows negligible effects on the liquid film dimensions. As the surface tension increases from 36.03 to 67.13 mN/m and the viscosity increases from 1 to [Formula: see text], the dimensions of the liquid film decrease. The effect of viscosity is more significant than surface tension within the scope of this experiment. Finally, an empirical correlation for the three investigated film dimensional parameters is proposed.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.