A. Hofmann, A. Kröner, L. Iaccheri, J. Wong, H. Geng, H. Xie
{"title":"3.63 Ga灰色片麻岩揭示了津巴布韦克拉通的古宙历史","authors":"A. Hofmann, A. Kröner, L. Iaccheri, J. Wong, H. Geng, H. Xie","doi":"10.25131/sajg.125.0005","DOIUrl":null,"url":null,"abstract":"\n Grey gneisses from the Tokwe and Rhodesdale terrains of the Zimbabwe craton have zircon ages of ~3.63, 3.52, and 3.34 Ga, validating the existence of Eo- to Palaeoarchaean crust. In-situ zircon Hf isotope compositions reveal the interplay between episodes of juvenile magma addition, crustal thickening and crustal differentiation. Starting from juvenile mafic crust (with chondritic composition) at ~3.9 Ga, the oldest nucleus of the Zimbabwe craton developed into a stable crustal block by ~3.35 Ga, following a tectonic and mantle evolution that is mirrored by other ancient terrains.","PeriodicalId":49494,"journal":{"name":"South African Journal of Geology","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"3.63 Ga grey gneisses reveal the Eoarchaean history of the Zimbabwe craton\",\"authors\":\"A. Hofmann, A. Kröner, L. Iaccheri, J. Wong, H. Geng, H. Xie\",\"doi\":\"10.25131/sajg.125.0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Grey gneisses from the Tokwe and Rhodesdale terrains of the Zimbabwe craton have zircon ages of ~3.63, 3.52, and 3.34 Ga, validating the existence of Eo- to Palaeoarchaean crust. In-situ zircon Hf isotope compositions reveal the interplay between episodes of juvenile magma addition, crustal thickening and crustal differentiation. Starting from juvenile mafic crust (with chondritic composition) at ~3.9 Ga, the oldest nucleus of the Zimbabwe craton developed into a stable crustal block by ~3.35 Ga, following a tectonic and mantle evolution that is mirrored by other ancient terrains.\",\"PeriodicalId\":49494,\"journal\":{\"name\":\"South African Journal of Geology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Geology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.25131/sajg.125.0005\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Geology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.25131/sajg.125.0005","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
3.63 Ga grey gneisses reveal the Eoarchaean history of the Zimbabwe craton
Grey gneisses from the Tokwe and Rhodesdale terrains of the Zimbabwe craton have zircon ages of ~3.63, 3.52, and 3.34 Ga, validating the existence of Eo- to Palaeoarchaean crust. In-situ zircon Hf isotope compositions reveal the interplay between episodes of juvenile magma addition, crustal thickening and crustal differentiation. Starting from juvenile mafic crust (with chondritic composition) at ~3.9 Ga, the oldest nucleus of the Zimbabwe craton developed into a stable crustal block by ~3.35 Ga, following a tectonic and mantle evolution that is mirrored by other ancient terrains.
期刊介绍:
The South African Journal of Geology publishes scientific papers, notes, stratigraphic descriptions and discussions in the broadly defined fields of geoscience that are related directly or indirectly to the geology of Africa. Contributions relevant to former supercontinental entities such as Gondwana and Rodinia are also welcome as are topical studies on any geoscience-related discipline. Review papers are welcome as long as they represent original, new syntheses. Special issues are also encouraged but terms for these must be negotiated with the Editors.