{"title":"调和分解、不可约基张量以及材料张量和伪张量的极小表示","authors":"Chi-Sing Man, Wenwen Du","doi":"10.1007/s10659-023-10010-3","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a general and efficient method to derive various minimal representations of material tensors or pseudotensors for crystals. By a minimal representation we mean one that pertains to a specific Cartesian coordinate system under which the number of independent components in the representation is the smallest possible. The proposed method is based on the harmonic and Cartan decompositions and, in particular, on the introduction of orthonormal irreducible basis tensors in the chosen harmonic decomposition. For crystals with non-trivial point group symmetry, we demonstrate by examples how deriving restrictions imposed by symmetry groups (e.g., <span>\\(C_{2}\\)</span>, <span>\\(C_{s}\\)</span>, <span>\\(C_{3}\\)</span>, etc.) whose symmetry elements do not completely specify a coordinate system could possibly miss the minimal representations, and how the Cartan decomposition of SO(3)-invariant irreducible tensor spaces could lead to coordinate systems under which the representations are minimal. For triclinic materials, and for material tensors and pseudotensors which observe a sufficient condition given herein, we describe a procedure to obtain a coordinate system under which the explicit minimal representation has its number of independent components reduced by three as compared with the representation with respect to an arbitrary coordinate system.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"154 1-4","pages":"3 - 41"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonic Decomposition, Irreducible Basis Tensors, and Minimal Representations of Material Tensors and Pseudotensors\",\"authors\":\"Chi-Sing Man, Wenwen Du\",\"doi\":\"10.1007/s10659-023-10010-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a general and efficient method to derive various minimal representations of material tensors or pseudotensors for crystals. By a minimal representation we mean one that pertains to a specific Cartesian coordinate system under which the number of independent components in the representation is the smallest possible. The proposed method is based on the harmonic and Cartan decompositions and, in particular, on the introduction of orthonormal irreducible basis tensors in the chosen harmonic decomposition. For crystals with non-trivial point group symmetry, we demonstrate by examples how deriving restrictions imposed by symmetry groups (e.g., <span>\\\\(C_{2}\\\\)</span>, <span>\\\\(C_{s}\\\\)</span>, <span>\\\\(C_{3}\\\\)</span>, etc.) whose symmetry elements do not completely specify a coordinate system could possibly miss the minimal representations, and how the Cartan decomposition of SO(3)-invariant irreducible tensor spaces could lead to coordinate systems under which the representations are minimal. For triclinic materials, and for material tensors and pseudotensors which observe a sufficient condition given herein, we describe a procedure to obtain a coordinate system under which the explicit minimal representation has its number of independent components reduced by three as compared with the representation with respect to an arbitrary coordinate system.</p></div>\",\"PeriodicalId\":624,\"journal\":{\"name\":\"Journal of Elasticity\",\"volume\":\"154 1-4\",\"pages\":\"3 - 41\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elasticity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10659-023-10010-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-023-10010-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Harmonic Decomposition, Irreducible Basis Tensors, and Minimal Representations of Material Tensors and Pseudotensors
We propose a general and efficient method to derive various minimal representations of material tensors or pseudotensors for crystals. By a minimal representation we mean one that pertains to a specific Cartesian coordinate system under which the number of independent components in the representation is the smallest possible. The proposed method is based on the harmonic and Cartan decompositions and, in particular, on the introduction of orthonormal irreducible basis tensors in the chosen harmonic decomposition. For crystals with non-trivial point group symmetry, we demonstrate by examples how deriving restrictions imposed by symmetry groups (e.g., \(C_{2}\), \(C_{s}\), \(C_{3}\), etc.) whose symmetry elements do not completely specify a coordinate system could possibly miss the minimal representations, and how the Cartan decomposition of SO(3)-invariant irreducible tensor spaces could lead to coordinate systems under which the representations are minimal. For triclinic materials, and for material tensors and pseudotensors which observe a sufficient condition given herein, we describe a procedure to obtain a coordinate system under which the explicit minimal representation has its number of independent components reduced by three as compared with the representation with respect to an arbitrary coordinate system.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.